Graph-based Neural Space Weather Forecasting

Daniel Holmberg!-2* Ivan Zaitsev! Markku Alho! Ioanna Bouri! Fanni Franssila!
Haewon Jeong? Minna Palmroth!® Teemu Roos’

!University of Helsinki 2UC Santa Barbara 2FMI Space and Earth Observation Centre

Abstract

Accurate space weather forecasting is crucial for protecting our increasingly digital
infrastructure. Hybrid-Vlasov models, like Vlasiator, offer physical realism beyond
that of current operational systems, but are too computationally expensive for
real-time use. We introduce a graph-based neural emulator trained on Vlasiator
data to autoregressively predict near-Earth space conditions driven by an upstream
solar wind. We show how to achieve both fast deterministic forecasts and, by using
a generative model, produce ensembles to capture forecast uncertainty. This work
demonstrates that machine learning offers a way to add uncertainty quantification
capability to existing space weather prediction systems, and make hybrid-VIasov
simulation tractable for operational use.

1 Introduction

Space weather describes conditions in near-Earth space driven by the solar wind and the internal
dynamics of Earth’s magnetosphere. These conditions threaten modern infrastructure by creating
geomagnetically induced currents that disrupt power networks [[1, 2], adversely affecting satellite
operations [3l 4], and causing failures in electromagnetic communication [5]]. Current operational
forecasting relies on driving global magnetohydrodynamic (MHD) models like BATS-R-US [6]
with real-time solar wind data from satellites orbiting the L.1 Lagrange point, such as ACE [7].
However, this paradigm faces several challenges. First, MHD models approximate plasma as a fluid,
omitting ion-kinetic processes that are only captured by higher-fidelity but computationally prohibitive
simulations like hybrid-Vlasov models. Second, most operational forecasts are deterministic single-
point predictions, which lack crucial uncertainty information. To address this, the need for ensemble
forecasting has been highlighted [8]], with existing approaches perturbing the solar wind inputs for
physics-based models [9], or using machine learning for post-processing deterministic outputs [[10].

To tackle these challenges, we take inspiration from recent breakthroughs in machine learning
for atmospheric weather forecasting [11} [12, [13], [14} 15} [16], and adapt graph-based limited-area
modeling [[14]] to the domain of space weather. We tailor established graph neural network (GNN)
architectures [[11} 13| [14] to a magnetospheric simulation grid in the noon-midnight meridional plane,
excluding the circular inner boundary close to Earth, and incorporate the upstream solar wind as
boundary condition. By doing so, we can produce high-fidelity forecasts of the magnetosphere’s
evolution more than 100 times faster on 1 GPU than the original simulation on 50 CPUs. We show
that the framework is capable of both deterministic and probabilistic forecasting, with the latter
using a latent-variable approach to generate ensembles that provide uncertainty information currently
missing from most space weather models.

*Corresponding author: dholmberg@ucsb.edu

Preprint.

Ground Truth Ensemble Mean Ensemble Std. Dev.

- 0.07
-8
- 0.06
L6 - 0.05
- -0.04 F
£
» =S
-0.03
-0.02
2
-0.01
0 -0.00

Figure 1: Example forecast of particle density 10 steps ahead, showing the faded inflow boundary.

1/cm

2 Hybrid-Vlasov dataset

The data for this study were generated using Vlasiator [[17], which performs global simulations of the
solar wind’s interaction with the Earth’s magnetosphere in the hybrid-Vlasov formalism. Ions are
treated as a velocity distribution function, f, that depends on position x, velocity v, and time ¢. Its
evolution is dictated by the Vlasov equation, which describes how f changes due to the electric field
E and magnetic field B:

of of of

at+v~aX+(E+v><B)-aV_0. (1)
Electrons are modeled as a massless, charge-neutralizing fluid where the number density n is equal
for both ions and electrons (n; ~ n. ~ n). The electromagnetic fields are evaluated by solving the
Maxwell-Darwin system: V x E = —0;B, V x B = poJ, V - B = 0. This system is closed by
relating the fields to the moments of the ion distribution function through a generalized Ohm’s law
that includes the Hall term, which involves the current density J and the elementary charge e:

JxB

E+vxB= . 2)
ne

The run was performed in a 2D-3V configuration (two spatial and three velocity dimensions) using a
timestep At = 1s and spatial resolution of 600 km. The simulation domain covers the noon-midnight
meridional plane (the -z plane in Geocentric Solar Ecliptic, or GSE, coordinates), extending from
—60 Ry to 430 RE along the x-axis and £30 Rg along the z-axis. The solar wind is injected at
the +x boundary as a Maxwellian distribution, parametrized by an ion density of p = 1/cm?, wind
velocity of v = (=750, 0,0) km/s, and a plasma temperature of 7' = 0.5 MK. The interplanetary
magnetic field is directed southward with B = (0,0, —5) nT. These conditions result in an Alfvén
Mach number of M 4 = 6.9. Plasma can exit through the other edges of the domain, where Neumann
boundary conditions are applied. The inner boundary is represented as a perfect conductor located at
aradius of 3.7 Rp from the Earth’s center. All vector quantities are given in GSE coordinates.

3 Method

Problem formulation We formulate the problem of space weather forecasting as mapping a set of
initial magnetospheric states to a sequence of future states. The input consists of two consecutive
states, X 50 = (X1, XY), to capture first-order dynamics [13]], with the goal of predicting the
future trajectory X7 = (X' ..., X7T). Each magnetospheric state X! € RV*% is a high-
dimensional tensor representing d, physical variables present in the hybrid-Vlasov simulation across
N grid locations in near-Earth space. The complete feature set is listed in Appendix B} Deterministic
models tackle the problem by producing a single point, typically mean, estimate of the trajectory
X 1T while probabilistic approaches aim to model the full conditional distribution p(X 7| X ~1:0),

Graph-based neural forecasting Using machine learning, the deterministic forecasting problem
can be solved with an autoregressive model applied iteratively to produce a forecast. In the prob-
abilistic case, we sample from the model’s output distribution and repeat the process to generate
an ensemble of trajectories. For both cases, we use a GNN based on an encode-process-decode
architecture [18] where: 1) grid inputs are encoded onto the mesh representation; 2) a number of
GNN layers process this latent representation; 3) the processed data is mapped back onto the original

grid to produce the final prediction. Here the GNN predicts the next step as a residual update to the
most recent input state, making it an easier learning task compared to predicting the next state directly.
For the model to better handle the open boundary on Earth’s dayside, we apply boundary forcing as
an additional input in the region from x = 27 R to the domain edge at x = 30 Rg, shown as the
faded areas in Fig.[I] A static binary mask indicates which grid nodes to force by replacing with
ground truth boundary data after each prediction. In an operational scenario this information would
come from conditioning on L1 observations [6}(19], or from a heliospheric host model [20].

Mesh variations We consider three mesh architectures for the GNN processor: a simple mesh
coarser than the simulation domain [11]]; a multiscale mesh [13]]; and a hierarchical mesh [14]]. The
multiscale and hierarchical meshes are constructed by recursively creating a sequence of graphs,
Gr,...,G1, at varying resolutions. The multiscale mesh, Gy, g, uses the nodes from the finest graph,
V1, but connects them with edges from all levels, £, U - -- U &1, allowing a single GNN layer to
process information across all spatial scales simultaneously. In contrast, the hierarchical approach
maintains L distinct graph levels, Gy, ..., Gr,, where the number of nodes decreases at each level.
Information is passed between adjacent levels using dedicated inter-level graphs, G; ;41 up and Gy 1 ;
down, to model different spatial scales separately. The mappings between grid and mesh nodes occur
through bipartite grid-to-mesh Ggops and mesh-to-grid G2 graphs.

Deterministic model We use the deterministic graph-based forecasting model Graph-FM [14]
to generate point estimate forecasts through the autoregressive mapping X! = f(X*~%~1). We
test this model with each of the three mesh architectures, adapting its processor accordingly. When
using the hierarchical mesh, a processing step is a complete sweep through the hierarchy. A sweep
sequentially applies GNN to propagate information up from the lowest level G; to the highest G,
and then back down. All upward updates are facilitated by propagation networks [14]], while the
remaining updates use interaction networks [21]], with all layers mapping to a latent dimensionality
d,. This design leverages the inductive bias of interaction networks to retain information, while
propagation networks are more effective at forwarding new information through the graph. We train
the deterministic models by minimizing a weighted mean square error (MSE) loss.

Probabilistic model For probabilistic space weather forecasting we employ the graph-based
ensemble forecasting model, Graph-EFM [14]. To model the distribution p(X*|X*~2t~1) for a
single time step, Graph-EFM uses a latent random variable Z*. This variable acts as a low-dimensional
representation of the stochastic elements of the weather system that are not captured by the input
states. By conditioning the prediction on this latent variable, the model can efficiently sample
different, spatially coherent outcomes. The relationship is defined by the integral:

p(Xt|Xt72:t71) _ /p(Xt|Zt, Xt72:t71)p(Zt‘Xt72:tfl)dzt (3)

where the term p(Z*| X *~%t~1) is the latent map and the term p(X!|Z¢, X!=2%t=1) s the predictor.
The latent map is a probabilistic mapping that takes the previous two weather states as input and
produces the parameters for a distribution over the latent variable Z*. Specifically, Graph-EFM uses
GNNs to map the inputs to the mean of an isotropic Gaussian distribution, effectively encoding the
state-dependent uncertainty into the latent space. The variance is kept fixed. This latent distribution
is defined over the nodes Vy, in the top, coarsest level of a given mesh graph, as follows:

p(Z'1x72 = [MZipz (X270, 1) “)

vEVL
ensuring that the stochasticity is introduced at a low-dimensional, spatially-aware level. The predictor
is a deterministic mapping that takes a specific sample of the latent variable Z?, along with the

previous weather states, to produce the next weather state Xt A sampled value of Z! is injected at
the top level of the graph hierarchy and its influence propagates down through the levels to produce a
full, high-resolution, and spatially coherent forecast. The predictor is a deterministic mapping, g, that

produces the next state Xt by adding a predicted residual update, §, to the previous state X*~1:
Xt _ g(Zt,Xt72:t71) — thl +g’(zt’Xt72:t71). (5)

By first sampling a Z* from the latent map and then passing it through the predictor, the model gener-
ates one possible future weather state. Repeating this process creates an arbitrarily large ensemble

of forecasts. Drawing from the structure of a conditional Variational Autoencoder (VAE) [22] 23],
we train the Graph-EFM by optimizing a variational objective equivalent to the negative Evidence
Lower Bound (ELBO), which combines a Kullback-Leibler (KL) divergence regularizer with a
reconstruction loss. Subsequently, we fine-tune the model by adding a Continuous Ranked Probability
Score (CRPS) loss [24} 25, 26]] to the objective, for calibration. Further details on the models and the
loss functions are available in Appendix [C|

4 Experiments

To evaluate our models, the Vlasiator simulation is causally split into training, validation, and test sets
with durations of 10 minutes, 1 minute, and 1 minute, respectively. This ensures that the evaluation
tests for meaningful generalization into the future. We train both the deterministic Graph-FM and
the probabilistic Graph-EFM using the simple, multiscale, and hierarchical mesh architectures. All
models are configured with a latent dimension of d, = 64. For the simple and multiscale graphs, the
processor consists of 4 processing layers. To ensure a fair comparison, the hierarchical Graph-FM
model uses 2 processing layers, as its sweep mechanism effectively doubles the number of updates
per layer. Graph-EFM is set to generate an ensemble size of 5. On a single GPU, the deterministic
models predict the next step approximately 500 times faster than the original simulation running on
50 CPUs, while our probabilistic models are roughly 80 times faster. Appendix |D|contains more
details on the training setup and computational complexity.

—— Graph-EFM (simple) Graph-EFM (multiscale) = Graph-EFM (hierarchical)
------ Graph-FM (simple) Graph-FM (multiscale) ===:=: Graph-FM (hierarchical)
0.4
3 -
0.6
L 0.4 4 S
& ® 0.2 A
O =}
n
0.2
0.0 00 /
T T T T T T T T
0 10 20 30 0 10 20 30 0 10 20 30
Lead Time (s) Lead Time (s) Lead Time (s)

Figure 2: The mean of the normalized forecast RMSE, CRPS, and Spread over all variables.

Results Figure[I]displays a sample forecast from the hierarchical Graph-EFM, showing the ensem-
ble mean and the ensemble standard deviation as a measure of forecast uncertainty. The performance
of all models is summarized in Figure [2| which plots the normalized RMSE, CRPS, and Spread
averaged over all variables. To normalize the metrics as unitless scores, we divide each by the
standard deviation of its corresponding variable. The RMSE measures the accuracy of the determinis-
tic forecast (or the ensemble mean), while the CRPS provides a comprehensive assessment of the
probabilistic forecast’s accuracy and calibration. In the determistic setting the hierarchical graph
architecture accumulates less error than the simple and multiscale variations. The probabilistic models
are quite comparable in performance. However, they tend to be underdispersed. In a well-calibrated
forecasting system the ensemble spread should match the error [27]], here the spread is smaller than
the error. The limited sample size in our training data is most likely the main culprit here, but this is
also a known characteristic of models trained primarily with a variational objective and in limited-area
weather modeling [14]], analogous to our magnetospheric setup in space. We also performed fairly
conservative CRPS fine-tuning here, which is designed to alleviate underdispersion. Additional
details on the metrics and per-variable results can be found in Appendices [E|and [

5 Conclusion and outlook

In this work, we demonstrate that graph-based neural emulators can learn the complex dynamics of
near-Earth space from a hybrid-Vlasov simulation, and provide exciting new uncertainty quantification
capability for space weather prediction. Future development should focus on extending the model

to three spatial dimensions, and depending on the simulation, a refined grid, for which GNNs are
well suited. Training on a larger sample size coupled to varying real world input conditions covering
multiple solar cycles would be ideal. This can also enable the use of larger timesteps, circumventing
much of the cumulative error inherent to autoregressive emulators. Finally, looking into the physical
realism of the forecasts and incorporating constraints, such as the divergence freeness of the magnetic
field, is another promising future direction to follow.

Acknowledgements

This work was funded by the Research Council of Finland under the FAISER project (grant nos.
361901, 361902). D.H. acknowledges support from the Fulbright-KAUTE Foundation Award for
conducting research at UCSB. Computing resources were provided by the LUMI supercomputer,
owned by the EuroHPC Joint Undertaking and hosted by CSC-IT Center for Science.

References

[1] Léonard Bolduc. GIC observations and studies in the Hydro-Québec power system. Journal of
Atmospheric and Solar-Terrestrial Physics, 64(16):1793-1802, 2002.

[2] Andrew P Dimmock, L Rosenqvist, J-O Hall, A Viljanen, Emiliya Yordanova, I Honkonen,
Mats André, and EC Sjoberg. The GIC and geomagnetic response over Fennoscandia to the
7-8 September 2017 geomagnetic storm. Space Weather, 17(7):989-1010, 2019.

[3] Robin Gubby and John Evans. Space environment effects and satellite design. Journal of
Atmospheric and Solar-Terrestrial Physics, 64(16):1723-1733, 2002.

[4] Yongliang Zhang, Larry J Paxton, Robert Schaefer, and William H Swartz. Thermospheric condi-
tions associated with the loss of 40 Starlink satellites. Space Weather, 20(10):e2022SW003168,
2022.

[5] DN Baker, Eamonn Daly, loannis Daglis, John G Kappenman, and Mikhail Panasyuk. Effects
of space weather on technology infrastructure. Space Weather, 2(2), 2004.

[6] A Glocer, M Fok, X Meng, G Toth, N Buzulukova, S Chen, and K Lin. CRCM + BATS-R-US
two-way coupling. Journal of Geophysical Research: Space Physics, 118(4):1635-1650, 2013.

[7] Edward C Stone, AM Frandsen, RA Mewaldt, ER Christian, D Margolies, JF Ormes, and
F Snow. The advanced composition explorer. Space Science Reviews, 86(1):1-22, 1998.

[8] Sophie A Murray. The importance of ensemble techniques for operational space weather
forecasting. Space Weather, 16(7):777-783, 2018.

[9] Steven Karl Morley, Daniel T Welling, and Jesse Richard Woodroffe. Perturbed input ensemble
modeling with the space weather modeling framework. Space Weather, 16(9):1330-1347, 2018.

[10] Enrico Camporeale, Xiangning Chu, OV Agapitov, and Jacob Bortnik. On the generation of
probabilistic forecasts from deterministic models. Space Weather, 17(3):455-475, 2019.

[11] Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

[12] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3D neural networks. Nature, 619(7970):533—
538, 2023.

[13] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning
skillful medium-range global weather forecasting. Science, 382(6677):1416-1421, 2023.

[14] Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic
weather forecasting with hierarchical graph neural networks. In Advances in Neural Information
Processing Systems, 2024.

[15] Hlan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84-90, 2025.

[16] Erik Larsson, Joel Oskarsson, Tomas Landelius, and Fredrik Lindsten. Diffusion-LAM: Proba-
bilistic limited area weather forecasting with diffusion. In /CLR 2025 Workshop on Tackling
Climate Change with Machine Learning, 2025.

[17] S Von Alfthan, D Pokhotelov, Y Kempf, S Hoilijoki, I Honkonen, A Sandroos, and M Palmroth.
Vlasiator: First global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath.
Journal of Atmospheric and Solar-Terrestrial Physics, 120:24-35, 2014.

[18] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, 2020.

[19] Tlja Honkonen, Max van de Kamp, Theresa Hoppe, and Kirsti Kauristie. Over 20-
year global magnetohydrodynamic simulation of Earth’s magnetosphere. Space Weather,
20(11):e2022SW003196, 2022.

[20] Anwesha Maharana, W Douglas Cramer, Evangelia Samara, Camilla Scolini, Joachim Raeder,
and Stefaan Poedts. Employing the coupled EUHFORIA-OpenGGCM model to predict CME
geoeffectiveness. Space Weather, 22(5):e2023SW003715, 2024.

[21] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. In Advances in Neural Information
Processing Systems, 2016.

[22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Internationcal
Conference on Learning Representations, 2014.

[23] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in Neural Information Processing Systems,
2015.

[24] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359-378, 2007.

[25] Stephan Rasp and Sebastian Lerch. Neural networks for postprocessing ensemble weather
forecasts. Monthly Weather Review, 146(11):3885-3900, 2018.

[26] Lorenzo Pacchiardi, Rilwan A Adewoyin, Peter Dueben, and Ritabrata Dutta. Probabilistic
forecasting with generative networks via scoring rule minimization. Journal of Machine
Learning Research, 25(45):1-64, 2024.

[27] Vincent Fortin, Mabrouk Abaza, Francois Anctil, and Raphael Turcotte. Why should ensemble
spread match the RMSE of the ensemble mean? Journal of Hydrometeorology, 15(4):1708—
1713, 2014.

A Future work

Emulating kinetic-scale physics This work emulates the spatial moments of the ion Velocity
Distribution Functions (VDFs), which Vlasiator solves fully. A natural progression would be to
forecast the entire VDFs over time, rather than just their moments. Here one could take inspiration
from previous work on emulating gyrokinetic simulations [28]], where a hierarchical vision transformer
was used for next step prediction of the 5D distribution function for adiabatic electrons.

Addressing error accumulation Neural emulators struggle with error accumulation on long roll-
outs, causing simulated trajectories to diverge. This happens because the model increasingly operates
“out of distribution” with each autoregressive step. To combat this, techniques like thermalization can
significantly extend stable rollout times by controlling error growth [29]. Another promising method
to tackle cumulative error involves training models to forecast a future state in a single step while
ensuring the temporal consistency of the forecast for each ensemble member [30].

Mesh refinement Simulating with hybrid-Vlasov models in three dimensions is computationally
so expensive that mesh refinement becomes essential. This allows for higher spatial resolution in
critical regions, like the bow shock and the magnetotail reconnection site near Earth, while using
lower resolution in less important areas such as inflow and outflow boundaries [31]. This results
in irregular data structures, making GNNs a future-proof model for modeling such data. However,
recently physics-motivated adaptive refinement has been tested [32]], where the refinement itself is
driven by physical conditions. This presents an additional interesting challenge for neural emulators.

Foundation models Recent community initiatives are gathering diverse physics simulations to
create large-scale datasets for machine learning [|33}134]]. Such datasets can be used to train foundation
models, which can learn across scales or multiple physical systems [35} 136} 37, 38]]. Space weather
data would be a valuable addition to these growing datasets. Conversely, space weather prediction
models could potentially be improved by training on diverse simulation data, allowing them to
leverage insights from various physical domains and potentially generalize better.

B Dataset details

The data used for this study is simulated using Vlasiator and contains the variables listed in Table[T]

Table 1: Summary of all variables and static fields in the Vlasiator dataset.
Abbreviation Unit

Variables

Magnetic field z-component B nT
Magnetic field y-component By nT
Magnetic field z-component B, nT
Electric field z-component E, mV/m
Electric field y-component E, mV/m
Electric field z-component E, mV/m
Velocity field x-component Vg km/s
Velocity field y-component Uy km/s
Velocity field z-component Uy km/s
Particle number density) 1/cm3
Plasma temperature T MK
Plasma pressure P nPa
Static fields

Coordinate in x T REg
Coordinate in 2 z REg
Radial distance from Earth T REg

C Model details

The 671 x 1006 (z,x) data grid excludes 5124 inner boundary nodes. We construct graphs by
recursively downsampling the grid, placing each coarser-level node at the center of a 3 x 3 finer-level
node square as seen in Fig.[3] We compare three mesh architectures: a simple single-level graph,
a three-level multiscale graph, and a three-level hierarchical graph, with full statistics in Table 2]
The multiscale version connects all levels into a single heterogeneous mesh to capture both short-
and long-range interactions, while the hierarchical version uses distinct, uniform levels to process
information at different spatial scales separately. For each node, an MLP encodes static features in
Table|[T] concatenated with previous states. For a complete explanation on update rules in the GNNs
see [14]. All MLPs use one hidden layer with Swish activation [39] and layer normalization [40].

(a) Simple Graph (b) Multiscale Graph

SS

(c) Graph Layers (d) Hierarchical Graph

Figure 3: Quadrilateral mesh variations used by the GNNs. Nodes and same-level edges in blue, and
inter-level edges in green. Node size corresponds to degree in the multiscale graph.

Table 2: Number of nodes and edges in the different graphs.

Graph Nodes Edges
Simple Gs 58592 465584
Multiscale Gums 58592 522054
Go 58592 465584

Go,1/G1,0 - 58592

. . G1 6510 51032
Hierarchical Gr2/Gon _ 6510
G 723 5438

Total 65825 587156

Geam - 1411687
GmoG - 2679608
Grid 669902 -

Deterministic objective We train the deterministic models by minimizing a weighted MSE:

1N e 9
n=11=
The loss is weighted by two terms:); is the inverse variance of the time differences for variable 7,
which normalizes the contribution of variables with different dynamic ranges. The second term, w;,
is a variable-specific weight. While often used in atmospheric forecasting to prioritize variables by
altitude, we set it uniformly to 1/d,.

Probabilistic objective The probabilistic model’s single-step prediction has a structure analogous
to a conditional VAE, and it is trained by optimizing a variational objective derived from the ELBO:

‘CVar (4}(’1572:1571’)(157 Ft) _ AKLDKLq (Zt|Xt72:t71’ Xt)p (Zt|Xt72:t71)
-Eq (Zt|Xt72;t717Xt)] ZnN:1 Z;’iil log X", (2", Xt-2t-1)

This objective consists of two terms. The first is the KL divergence, which acts as a regularizer,
encouraging the approximate posterior distribution g to remain close to the prior p. The second term is
the expected negative log-likelihood, or reconstruction loss, which trains the predictor g to accurately
reconstruct the true state X? from a latent sample Z¢. The hyperparameter Ak, balances these
two terms to prevent the model from collapsing to a deterministic prediction. As both distributions
are Gaussian, the KL divergence has a closed-form solution. The variance o2 ; is an output of
the predictor network. The model is further fine-tuned using the CRPS loss, which is minimized
only when the predicted distribution matches the empirical data distribution. We use an unbiased

two-sample estimator for the CRPS loss, summed over all grid points and variables:

N dy 1 R
‘CCRPS = Z Z § (‘Xn,i - X’n,i

n=1i=1

2 (N

v,i%v,i

+ |X’n,i - X’n,i| - ’Xn,i - Xn,i

) ®)

where X* and X* are two independent ensemble members (forecasts) generated by the model. The
final training loss combines both objectives: £ = Lvar + AcrpsLCRPS-

D Training details

All models are trained using the AdamW optimizer [41]] with parameters 8; = 0.9, 85 = 0.95,
a weight decay of 0.01, and an effective batch size of 8. The specific training schedules for the
deterministic and probabilistic models are detailed in Table[3] The deterministic Graph-FM model
follows a standard training schedule with a learning rate decay after 300 epochs. The probabilistic
Graph-EFM model is trained in three distinct stages. First, we train the model as a simple autoencoder
with both Ak and Acrps set to O to teach the encoder and decoder to reconstruct the fields from the
latent space without probabilistic constraints. In the second stage, we introduce the KL divergence
term to train the full variational model on the single-step distribution. Finally, we fine-tune the model
with the CRPS loss to improve the calibration of the ensemble.

Table 3: Training schedules for the deterministic and probabilistic models.

Model Epochs Learning Rate Agr, Acres
300 10~3 - -
Graph-FM 200 10-4 i i
200 103 0 0
Graph-EFM 300 10-3 1 0
50 1074 1 1073

Computational complexity Table [shows the times it took to train the different models, and
their inference speeds on the test set. Training was done on 8 AMD MI250X GPUs with 2 workers
for the dataloader. The actual training time is therefore the GPU hours in the table divided by 8.
Inference was performed on 1 AMD MI250X GPU and is measured as the time it takes for one
next-step prediction. Graph-EFM produces an ensemble size of 5 here. For comparison, the Vlasiator
simulation takes 4-5 minutes on 50 AMD EPYC 7H12 CPUs to simulate 1 s of real time.

Table 4: Training and inference times for different models and graph variations.

Model Graph Training time (GPU h) Inference time (s)
Simple 101 0.47

Graph-FM Multiscale 102 0.48
Hierarchical 108 0.52
Simple 119 3.20

Graph-EFM Multiscale 122 3.31
Hierarchical 131 3.45

E Metrics

To evaluate the performance of our forecasts, we use a set of standard metrics. For an ensemble
forecast with M members (deterministic forecasts have M = 1), we denote the prediction for variable

1 at location n for a given sample s at time ¢ as X 5 t ™ with the corresponding ground truth being

x> L RMSE is calculated by averaging the squared error over all S forecasts in the test set and all N
grld locations:

B 1 S N 2
RMSEL; = \| o Z Z (X0 xa) ©
M

—S,t 1 >s,t,m
where X, = - >y (10)

m=1
The CRPS is calculated for ensemble forecasts to assess the overall quality of a probabilistic forecast

by comparing the entire predictive distribution to the single ground truth observation. Lower values
indicate better performance. We use a ﬁnite-sample estimate [42], computed as:

1 S N
CRPSt,i = 7N Z (‘XZ’?m - XZ’?

s=1n=1
1 M M
- - Xs,?%,m Xs ;t,m/)
2M (M — 1) mz:lmzl_l ‘ ni i)

(1D

The spread quantifies the uncertainty expressed by the ensemble. It is defined as the root mean square
deviation of the ensemble members from the ensemble mean.

S M

Spread, ; = SMN Z Z Z (— XfL';m>2 (12)

s=1m=1n=1

F Additional results

Figure] shows that for deterministic models, the error in the simple and multiscale architectures
grows more rapidly than in the hierarchical version. The ensemble models perform similarly to
each other in terms of their mean error. The CRPS scores in Fig. [5|are also quite comparable. The
ensemble spread shown in Fig. [6]is consistently lower than the error for all models, indicating that the
forecasts are underdispersed. When these two values are equal, the forecasting system is considered
well-calibrated.

Visual inspection of an example test set forecast 10 steps ahead produced by the hierarchical Graph-
EFM model in Fig. [JHI8|reveals that it successfully captures complex and detailed magnetospheric
dynamics. The ensemble standard deviation correctly localizes the highest uncertainty to physically
active regions such as the bow shock, magnetotail, and the tail lobes. However, we also observe the
emergence of spurious structures not present in the ground truth, for example in the predicted B,

10

and v, components within the northern tail lobe. We attribute these artifacts primarily to the limited
sample size of the training dataset.

To address these points, future work should focus on training with a larger dataset, which would
make performance differences between models clearer and reduce artifacts. The ensemble calibration
could be improved by increasing the CRPS weight during fine-tuning to enhance the spread. Finally,
incorporating a rollout-based loss, i.e. optimizing over many future timesteps, can be a useful strategy
to improve long-term stability of the emulators [13]].

B By B,
41 7.5
= = =
) £ £ 5.0 -
[Sa]] [
s s s
2.5 A
~ 4 ~
0.0
T T T T
E, E,
g g g 31
> > >
E E E
5]] [£a}
wn wn wn
= = =
~ ~ ~
Vy vy V.
~ 150 —~ ~ 200 A
2 £ 100 A o <
g g g
< 100 A & kv
[sa] 52} 1 100 o
%) n %)
S 507 = =
~ ~ ~
0 = O -
P
0.6
o —~ K ~ 20 4
© * N
§ % 2
0.4 - g &
Z o 01 o
[ud} wn v 10 1
(é) 0.2 - b)
2 ~ ~
0.0 1 0.0 4 01
T T T T T T T T T T T T
0 10 20 30 0 10 20 30 0 10 20 30
Lead Time (s) Lead Time (s) Lead Time (s)
Graph-EFM (simple) Graph-EFM (multiscale) —— Graph-EFM (hierarchical)
------ Graph-FM (simple) -====- Graph-FM (multiscale) -=====« Graph-FM (hierarchical)

Figure 4: RMSE for all predicted variables as a function of forecast lead time.

11

30

- - [©
o
. .
- - | ©
- - s
T T T T T T T T T T T T T
(1W) SO (AT S0 (S/UY) SO OIN) Sd¥D
- - L O
[ep]
- - [©
o
< -
- - | ©
- - - o
T T T T T T T T T T T T
n (=} n o o — o o o o <t o o
s s 2 3 (W/AW) ST “ (o) - S S S
s/uny) Sdd
(1U) S0 D SO (edW) SAUD
| L [©
o
< &
L - | ©
- - - o
T T T T T T T T T T T T
~ = o o o =9 2 g 3 o = S
1) S0 s e < ° ° ° ©
(1) (w/Aw) STYO (s/ux)) SAY0 (¢swo/T) SPUD

Lead Time (s) Lead Time (s)

Lead Time (s)

Graph-EFM (hierarchical)

Graph-EFM (multiscale)

Graph-EFM (simple)

Figure 5: CRPS for all predicted variables as a function of forecast lead time.

12

L O
[sp]
L ©
o~
S =
L ©
—
T T T T T T T T T T T T T T
0 S 0 = < ~ S] S o =} ™ ~ — =}
S) ! 3 S <) =] -
s S oS 3 (IW) peaads
(1) peoxds (w/Au) peaxds (s/uny)) peaxds
L ©
™
L ©
o~
=) By
L ©
—
T T T T T T T T T T T T
< ~ [S) < N o o o S} 0 o 1o) =}
<) S IS <) <) S « - 3 3 W %
(Lu) peaads (w/Awr) peaads (s/unsy) peaads s © S ©°
(equ) peaadg
L ©
™
L ©
o
S &y
| ©
F o
T T T T T T T T T T T T T T
© < ~ S ~ — = =] <] = S <] =)
S S <) S < < o @ N - M M M

(Lu) pesads

(w/Aw) peaads

(s/ury) peods

(;wo/T) peaids

Lead Time (s) Lead Time (s)

Lead Time (s)

Graph-EFM (hierarchical)

Graph-EFM (multiscale)

Graph-EFM (simple)

Figure 6: Ensemble spread for all predicted variables as a function of forecast lead time.

13

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

Ground Truth Ens. Mean

30 M
- 200
20
- 100
10
N N =
0 -0 =)
h A h 4
-10
- -100
-20
- —200
-30
30 Ens. Member Ens. Std.
20 - 0.5
10 - 0.4
0 7 035
h 4
-10 -0.2
-20 -0.1
-30 : -0.0
-60 -50 -40 -30 -20 -10 0 10 20 30 -60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rp)
Figure 7: Magnetic field component B, at timestep 10 from Graph-EFM (hierarchical).
20 Ground Truth Ens. Mean B
- 20
20 - 15
-10
10
-5
0 -~ &
--5
-10
--10
-20 - —15
- —20
-30
20 Ens. Member Ens. Std.
- 0.35
20
- 0.30
10 -0.25
0 -0.20 &
-0.15
-10
-0.10
-20
-0.05
-30 -0.00
-60 -50 -40 -30 -20 -10 0 10 20 30 —-60 -50 -40 -30 -20 -10 O 10 20 30
X (Rg) X (Rg)

Figure 8: Magnetic field component B, at timestep 10 from Graph-EFM (hierarchical).

14

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

Ground Truth Ens. Mean

30 M
- 200
20
- 100
10
- -
0 {f ¥ {f ¥ U=
A A
-10
- -100
-20
- —200
-30
30 Ens. Member Ens. Std.
- 0.6
20
- 0.5
10
-0.4
-
0 {f ¥ 03 %
-
-10 -0.2
-20 -0.1
-30 -0.0
-60 -50 -40 -30 -20 -10 0 10 20 30 -60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rg)
Figure 9: Magnetic field component B, at timestep 10 from Graph-EFM (hierarchical).
20 Ground Truth Ens. Mean
20 - 10
10 -5
g
0 S
g
-10 --5
-20 -—-10
-30
20 Ens. Member Ens. Std.
20 - 0.4
10
-0.3
g
0 =
02"
-10
0.1
-20
-30 -0.0
-60 -50 -40 -30 -20 -10 O 10 20 30 -60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rg)

Figure 10: Electric field component E,; at timestep 10 from Graph-EFM (hierarchical).

15

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

Ground Truth Ens. Mean

30 g 30
20 - 20
10 -10
0 0 E
r >
E
-10 --10
-20 - —20
=30 - —30
30 Ens. Member Ens. Std.
- 0.6
20
- 0.5
10
-0.4
o g
03 %
-10 0.2
—20 -0.1
-30 -0.0
-60 -50 -40 -30 -20 -10 0 10 20 30 -60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rg)

Figure 11: Electric field component E, at timestep 10 from Graph-EFM (hierarchical).

Ground Truth Ens. Mean

30 1

- 20
20

-10
10

g
0 -0 >
g

-10

--10
-20

- —20
-30

Ens. Member Ens. Std.

30

- 0.35
20 - 0.30
10 8 - 0.25

5 g
0 O.ZOS

-0.15
-10

-0.10
-20 -0.05
-30 -0.00
-60 -50 -40 -30 -20 -10 0 10 20 30 -60 -50 -40 -30 -20 -10 0 10 20 30

X (Rg) X (Rg)

Figure 12: Electric field component £, at timestep 10 from Graph-EFM (hierarchical).

16

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

30 Ground Truth Ens. Mean -
- 2000
20
- 1000
10
K
o [— B - o f
= ~<
-10
- ~1000
-20
- 2000
-30
30 Ens. Member Ens. Std.
- 20.0
20 -17.5
- 15.0
10
-125
K
0 * - ~100
_10 -7.5
5.0
-20
-2.5
-30 -0.0
-60 -50 —-40 -30 -20 -10 O 10 20 30 —60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rg)
Figure 13: Velocity component v,, at timestep 10 from Graph-EFM (hierarchical).
Ground Truth Ens. Mean
30 § 1000
20 - 750
- 500
10
- 250
K
0 -0 E
- —250
-10
- —500
-20 - —750
-30 - —1000
20 Ens. Member Ens. Std.
- 16
20 - 14
12
10
- 10
2
0 -8 E
~10 6
-4
-20
-2
-30 -0
-60 -50 -40 -30 -20 -10 O 10 20 30 —60 -50 -40 -30 -20 -10 0 10 20 30
X (Rg) X (Rg)

Figure 14: Velocity component v,, at timestep 10 from Graph-EFM (hierarchical).

17

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

Ground Truth Ens. Mean

30 §- 1000
20 - 750
- 500
10
- 250
K3
0 -0 g
~
- -250
-10
- —500
-20 - —750
_30 - ~1000
30 Ens. Member Ens. Std.
- 20.0
20 -17.5
10 -15.0
-12.5
K3
0 100 B
_10 -7.5
-5.0
-20
-25
-30 -0.0
—60 -50 -40 -30 -20 -10 O 10 20 30 —60 -50 -40 -30 -20 -10 O 10 20 30
X (Rg) X (Rg)
Figure 15: Velocity component v, at timestep 10 from Graph-EFM (hierarchical).
Ground Truth Ens. Mean
-8
-6
E
o
L4 S
-2
-0
20 Ens. Member Ens. Std.
- 0.07
20 - 0.06
10 -0.05
-0. 4 =
0 0.0: S
0.03 "
-10
-0.02
—20 - 0.01
-30 -0.00

-60 -50 -40 -30 -20 -10 0 10 20 30 —60 -50 -40 -30 -20 -10 O 10 20
X (Rg) X (Rg)

Figure 16: Particle number density p at timestep 10 from Graph-EFM (hierarchical).

Z (Rg)

Z (Rg)

z (Re)

z (Rg)

Ground Truth Ens. Mean

-4.0
-3.5
-3.0
-2.5
—zo%
- 1.5
-1.0
- 0.5
- 0.0

Ens. Member Ens. Std.
- 0.025
- 0.020
-0.015
&
=
-0.010
-0.005
-0.000
-60 -50 -40 -30 -20 -10 0 10 20 30 —-60 -50 -40 -30 -20 -10 O 10 20 30
x (Rg) X (Rg)
Figure 17: Plasma pressure P at timestep 10 from Graph-EFM (hierarchical).
Ground Truth Ens. Mean
- 200
- 150
M
-100 5
- 50
-0
Ens. Member Ens. Std.
-1.75
- 1.50
-1.25
-1.00 y,
s
-0.75
-0.50
-0.25
-0.00

-60 -50 -40 -30 -20 -10 0 10 20 30 —60 -50 -40 -30 -20 -10 O 10 20 30
X (Rg) X (Rg)

Figure 18: Plasma temperature 7" at timestep 10 from Graph-EFM (hierarchical).

19

Appendix references

[28] Gianluca Galletti, Fabian Paischer, Paul Setinek, William Hornsby, Lotenzo Zanisi, Naomi
Carey, Stanislas Pamela, and Johannes Brandstetter. 5D neural surrogates for nonlinear gyroki-
netic simulations of plasma turbulence. In ICLR 2025 Workshop on Tackling Climate Change
with Machine Learning, 2025.

[29] Chris Pedersen, Laure Zanna, and Joan Bruna. Thermalizer: Stable autoregressive neural
emulation of spatiotemporal chaos. In International Conference on Machine Learning, 2025.

[30] Martin Andrae, Tomas Landelius, Joel Oskarsson, and Fredrik Lindsten. Continuous ensemble
weather forecasting with diffusion models. International Conference on Learning Representa-
tions, 2025.

[31] Urs Ganse, Tuomas Koskela, Markus Battarbee, Yann Pfau-Kempf, Konstantinos Papadakis,
Markku Alho, Maarja Bussov, Giulia Cozzani, Maxime Dubart, Harriet George, et al. Enabling
technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space. Physics of
Plasmas, 30(4), 2023.

[32] Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth. Physics-motivated
cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code. Geoscien-
tific Model Development, 17(16):6401-6413, 2024.

[33] Eirini Angeloudi, Jeroen Audenaert, Micah Bowles, Benjamin M Boyd, David Chemaly, Brian
Cherinka, Ioana Ciucd, Miles Cranmer, Aaron Do, Matthew Grayling, et al. The multimodal
universe: Enabling large-scale machine learning with 100 TB of astronomical scientific data. In
Advances in Neural Information Processing Systems, 2024.

[34] Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
Marsha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The Well: A
large-scale collection of diverse physics simulations for machine learning. In Advances in
Neural Information Processing Systems, 2024.

[35] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for spatiotemporal surrogate models. In Advances in Neural
Information Processing Systems, 2024.

[36] Harris Abdul Majid, Pietro Sittoni, and Francesco Tudisco. Solaris: A foundation model of the
sun. In NeurIPS 2024 Workshop on Foundation Models for Science, 2024.

[37] Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brand-
stetter, Patrick Garvan, Maik Riechert, Jonathan A Weyn, Haiyu Dong, et al. A foundation
model for the Earth system. Narure, 641(8065):1180-1187, 2025.

[38] Sujit Roy, Johannes Schmude, Rohit Lal, Vishal Gaur, Marcus Freitag, Julian Kuehnert,
Theodore van Kessel, Dinesha V. Hegde, Andrés Mufioz-Jaramillo, Johannes Jakubik, et al.
Surya: Foundation model for heliophysics. arXiv preprint arXiv:2508.14112, 2025.

[39] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

[40] Jimmy Ba, Jamie Kiros, and Geoffrey Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[42] Michaél Zamo and Philippe Naveau. Estimation of the continuous ranked probability score with
limited information and applications to ensemble weather forecasts. Mathematical Geosciences,
50(2):209-234, 2018.

20

	Introduction
	Hybrid-Vlasov dataset
	Method
	Experiments
	Conclusion and outlook
	Future work
	Dataset details
	Model details
	Training details
	Metrics
	Additional results

