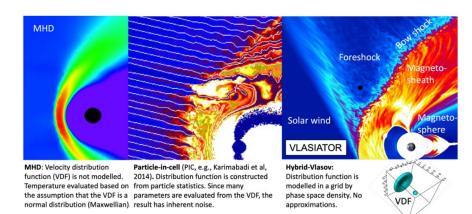
Deterministic and Probabilistic Near-Earth Space Weather Forecasting with Machine Learning

Daniel Holmberg, Dec. 15, 2025 AGU New Orleans

Magnetospheric simulation methods

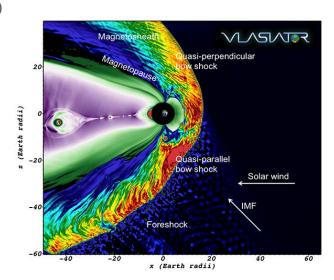
- Magnetohydrodynamics (MHD) models plasma as a continuous fluid, combining fluid dynamics with Maxwell's equations to describe plasma motion under magnetic fields.
- Particle-in-cell (PIC) simulates many individual (or super) particles in a self-consistent electromagnetic field.
- Hybrid-Vlasov (Vlasiator) used in this work simulates ions through the Vlasov equation on a phase-space grid, capturing their distribution function directly, while electrons are treated as a massless, charge-neutralizing fluid.



Hybrid-Vlasov simulations

- 2D space + 3D velocity (2D-3V) simulation on the noon–midnight (x-z) Geocentric Solar Ecliptic plane.
- Domain: $x = -60 \rightarrow 30 \text{ Re}, z = -30 \rightarrow 30 \text{ Re}, \text{ spatial res } 600 \text{ km}.$
- Inner boundary at 3.7 Re, dayside inflow with Maxwellian solar wind.
- Four runs with increasing solar-wind ion density ρ .

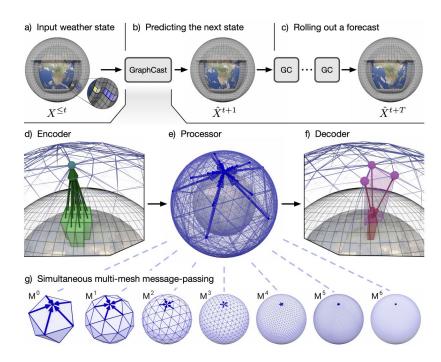
Label	$\rho~(\mathrm{cm}^{-3})$	$m{v}~(\mathrm{km/s})$	B (nT)	T (MK)	M_A	Δt (s)	$t_{ m tot}$ (s)
Run 1	0.5	(-750, 0, 0)	(0, 0, -5)	0.5	4.9	1.0	800
Run 2	1.0	(-750, 0, 0)	(0, 0, -5)	0.5	6.9	1.0	800
Run 3	1.5	(-750, 0, 0)	(0, 0, -5)	0.5	8.4	1.0	800
Run 4	2.0	(-750, 0, 0)	(0,0,-5)	0.5	9.8	1.0	800



M. Palmroth, et al. Vlasov methods in space physics and astrophysics. Living reviews in computational astrophysics (2018)

Proposed method

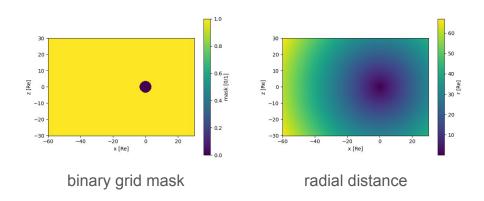
- Train a graph neural network (GNN) to autoregressively predict next simulation frame.
- Meaning, predicted state is used as input to predict the following after that.
- Large advantage in terms of speed with respect to numerical simulations.
- Modern generative models open the doors for fast ensemble forecasts and uncertainty quantification.



R. Lam et al., Learning skillful medium-range global weather forecasting. Science (2023)

Propagated features

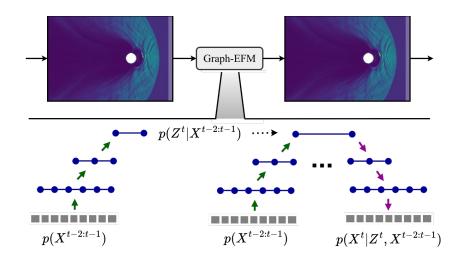
- Magnetic and electric fields
- Plasma moments: velocity, density, pressure, temperature
- Encode also static coordinates (x, z, radial distance)
- Released openly in Zarr format to enable ML studies on highly resolved plasma.



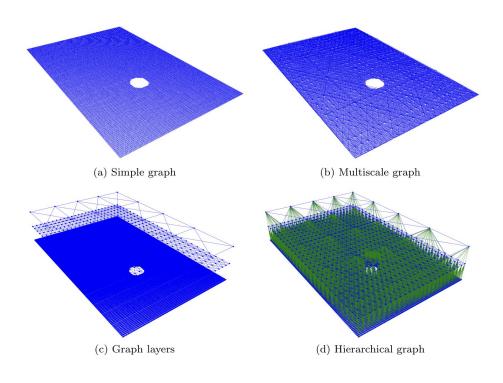
Variable	Label	\mathbf{Unit}
Magnetic field x -component	B_x	${ m nT}$
Magnetic field y -component	B_y	${ m nT}$
Magnetic field z -component	B_z	${ m nT}$
Electric field x -component	E_x	$\mathrm{mV/m}$
Electric field y -component	E_y	mV/m
Electric field z -component	E_z	mV/m
Velocity field x-component	v_x	$\rm km/s$
Velocity field y -component	v_y	$\rm km/s$
Velocity field z -component	v_z	$\rm km/s$
Particle number density	ρ	$1/\mathrm{cm}^3$
Plasma pressure	P	nPa
Plasma temperature	T	MK

Model architecture

- Encode from high-resolution data grid on to a coarser mesh.
- Process node and edge representations using interaction networks, learning a latent mesh representation.
- Decode from mesh back to data grid yielding the predicted next state of the simulator.
- Probabilistic model injects noise into coarsest mesh level. Learns the full distribution.
- Can sample arbitrarily many ensemble members → forecast uncertainty.



Mesh variations compared for the GNN



Training objectives

Minimize composite loss over many autoregressive steps.

- → Graph-FM: Sum of weighted Mean Squared Error (MSE) and magnetic divergence loss with derivatives discretized using second—order central differences.
- → Graph-EFM: Variational autoencoder that maximizes Evidence Lower Bound (ELBO) with weighted Continuous Ranked Probability Score (CRPS) loss + divergence penalty.

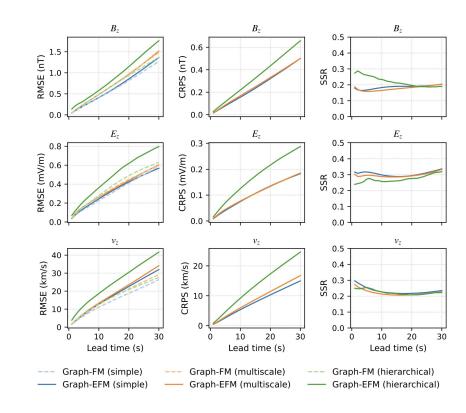
$$\mathcal{L}_{ ext{MSE}} = rac{1}{TN} \sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{i=1}^{d_x} \omega_i \lambda_i \left(\hat{X}_{n,i}^t - X_{n,i}^t \right)^2$$

$$\mathcal{L}_{\text{Div}} = \frac{1}{TN} \sum_{t=1}^{T} \sum_{n=1}^{N} \left(\frac{\partial \hat{B}_{x}^{t}}{\partial x} + \frac{\partial \hat{B}_{z}^{t}}{\partial z} \right)_{n}^{2}$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{MSE}} + \lambda_{\mathrm{Div}}\,\mathcal{L}_{\mathrm{Div}}$$

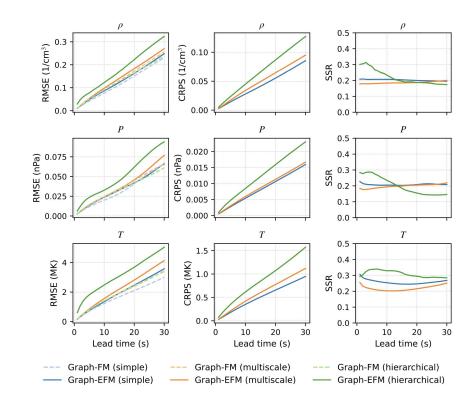
Forecast RMSE, CRPS and Spread-Skill-Ratio

- Metrics shown per lead time for E, B, and v z-components.
- RMSE: pointwise forecast error; lower is better.
- CRPS: measures how well the predicted distribution matches the true value.
- Spread-Skill-Ratio (SSR): Ratio of ensemble spread to RMSE (ideal ≈ 1). Here SSR ≈ 0.2–0.3, indicating underdispersive ensembles.
- The model captures epistemic uncertainty from model limitations, with no aleatoric uncertainty since the data contain no observational noise.

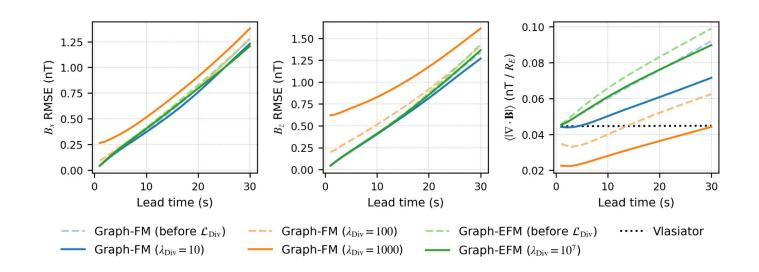


Forecast RMSE, CRPS and Spread-Skill-Ratio

- Metrics shown per lead time for ρ , P, and T z-components.
- RMSE: pointwise forecast error; lower is better.
- CRPS: measures how well the predicted distribution matches the true value.
- Spread-Skill-Ratio (SSR): Ratio of ensemble spread to RMSE (ideal ≈ 1). Here SSR ≈ 0.2–0.3, indicating underdispersive ensembles.
- The model captures epistemic uncertainty from model limitations, with no aleatoric uncertainty since the data contain no observational noise.

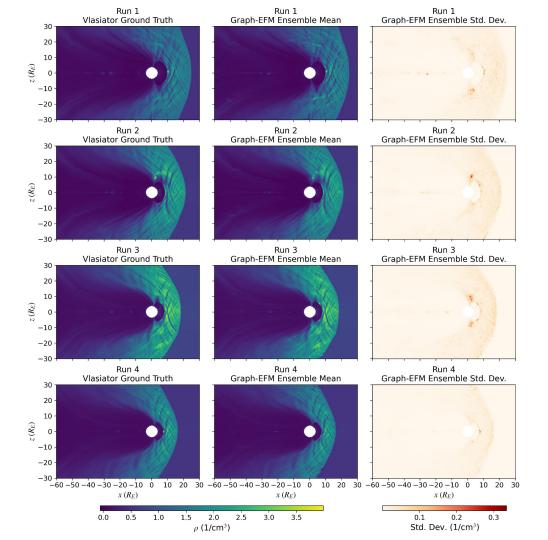


Effect of divergence penalty



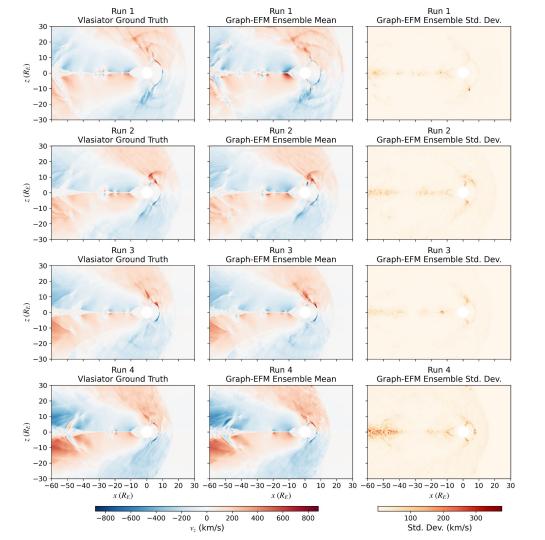
Example forecast

Predicted ρ and their uncertainty 30 steps ahead for all four runs.

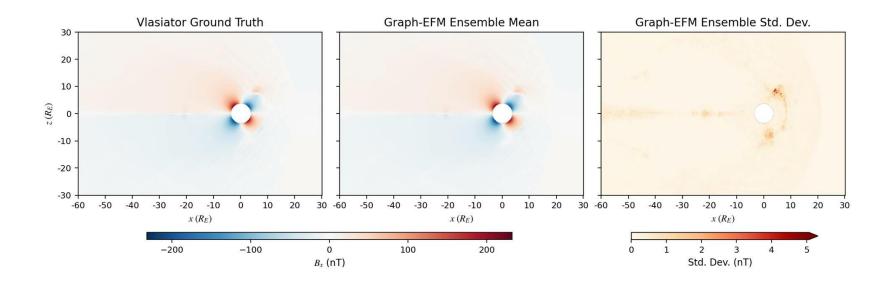


Example forecast

Predicted v_z and their uncertainty 30 steps ahead for all four runs.

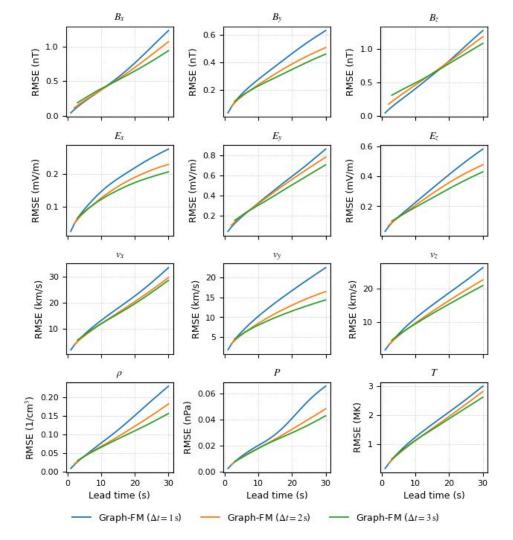


Example forecast



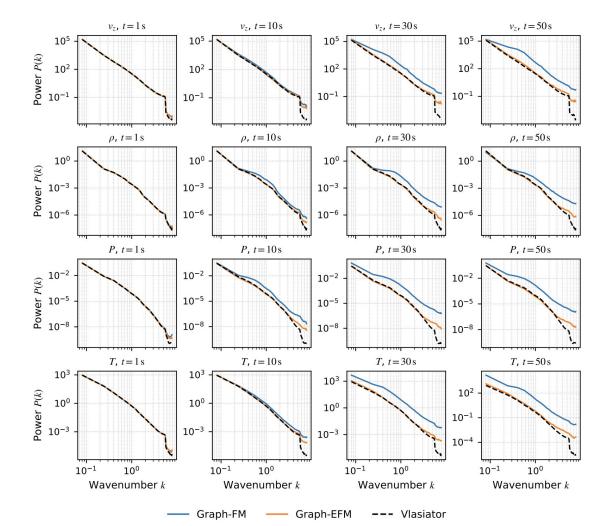
Step size comparison

- Trained Graph-FM with timesteps
 1s, 2s, 3s by subsampling → larger timestep is trained on less data.
- Still larger step sizes incur less cumulative error.
- Would argue that much larger timesteps can be used as long as the temporal extent of the training data is there to match it.



Power spectra

- Power spectra reveal whether models preserve the correct scale-dependent structure of the system.
- At higher lead times and higher wavenumbers (smaller spatial scales), ML models tend to drift from the reference spectra.
- Graph-FM shows significant drift, whereas Graph-EFM mainly lose structures at the finest-scales.



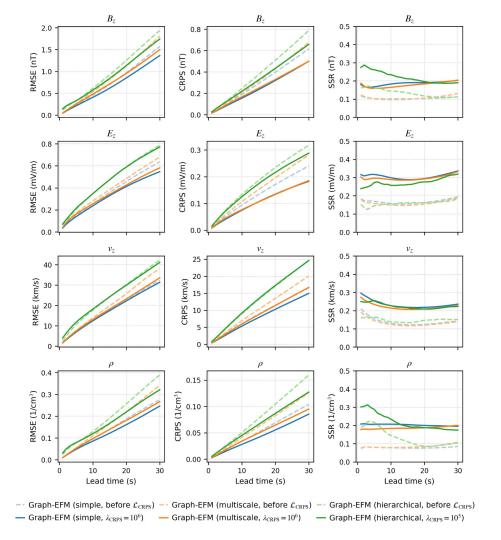
Outlook

- Autoregressive models produces a cumulative error, and smoothening for long rollouts.
- Long sequence of training data (≥ solar cycle) and larger step sizes could circumvent that issue.
- Terrestrial weather progress benefit from decades of openly available reanalysis, i.e. simulation with assimilated observations. Similar setup for space weather to enable data-driven forecasting?
- Graph-based models well-suited also for refined grids such as Vlasiator in 3D.
- Adapt to heliospheric model like WSA-ENLIL or EUHFORIA?

Preprint

Code + data

Effect of CRPS Finetuning



Ensemble size comparison

