Regional Ocean Forecasting with Hierarchical Graph Neural Networks

Daniel Holmberg 29.11.2024

Standard Numerical Mediterranean Forecasting

- Uses Nucleus for European Modelling of the Ocean (NEMO) to simulate physical ocean processes such as currents, temperature, and salinity numerically.
- Incorporates observational data (in situ measurements, remotely sensed data) into models using variational ocean data assimilation (OceanVar).
- Interpolated simulation grid based on General Bathymetric Chart of the Oceans (GEBCO).
- Operates on high-resolution 1/24° grid with 141 vertical levels.
- Open boundaries at Gibraltar and Dardanelles.
- River runoff, e.g. Rhône, Po, and the Nile.
- Forced with surface atmospheric quantities.

The Mediterranean Forecasting System–Part 1: Evolution and performance. Ocean Science (2023)

Proposed Method

- Train a graph neural network (GNN) to autoregressively predict next simulation step.
 Meaning, predicted state is used as input to predict the following state after that.
- Produces a cumulative error, and smoothening as time goes on.
- However, for ocean forecasting the method is promising: reasonable amount of rollout steps needed.
- Large advantage in terms of prediction speed vs numerical simulations.

a) Input weather state

 $X^{\leq t}$

Simultaneous multi-mesh message-passing

d) Encoder

a)

Mediterranean Sea Physics Dataset

Variables

- Covers the epipelagic zone with every other simulated depth (18 total) down to 200 meters.
- 75 variables in total (18×4 + 3): potential temperature, salinity, meridional and zonal velocity + single level SSH, bottom temperature and mixed layer depth.

Training Set

- Daily Med-PHY reanalysis data from January 1987 to December 2021.
- Plus analysis data from January 2022 to April 2024.

Validation Set

• Analysis data from May to June 2024 (check for convergence and overfitting).

Test Set

• Analysis data from July to August 2024.

https://marine.copernicus.eu/

Atmospheric and Boundary Forcing

Atmospheric Forcing

- 4 key drivers: 10-meter zonal and meridional winds, 2-meter temperature, and mean sea level pressure.
- Sourced from ERA5 reanalysis data, bi-linearly interpolated to match ocean grid resolution of 1/24°.
- Includes seasonal forcing features sine/cosine of the day of year.

Boundary Forcing

- Applied at the grid boundary (west of 5.2°W, covering the Strait of Gibraltar).
- Utilizes Mediterranean forecast data for boundary conditions, could perhaps also incorporate global forecasts directly.
- Normally forecast is forced with ECMWF HRES and 10 days long.
- Here: Extended to 15-day forecasts using ENS/AIFS forecasts, with the boundary condition repeated for the last 5 days.

Surface temperature and wind. <u>https://www.ecmwf.int/</u>

Summary of Propagated Features and Forcing

	Abbreviation	Unit	Vertical Level
Variables			
Eastward sea water velocity	uo	m/s	18 depths
Northward sea water velocity	vo	m/s	18 depths
Ocean mixed layer thickness	mlotst	m	Sea surface
Sea water salinity	SO	%0	18 depths
Sea surface height above geoid	ZOS	m	Sea surface
Sea water potential temperature	thetao	°C	18 depths
Sea water potential temperature at the sea floor	bottomT	°C	Sea floor
Static fields			
Sea floor depth below geoid	deptho	m	Sea floor
Mean dynamic topography	mdt	m	Sea surface
Latitude	lat	0	-
Longitude	lon	0	-
Forcing			
10m u-component of wind	u10	m/s	10 m above surface
10m v-component of wind	v10	m/s	10 m above surface
2m temperature	t2m	°C	2 m above surface
Mean sea level pressure	msl	Pa	Sea surface
Sine of time of year	sin_toy	-	-
Cosine of time of year	cos_toy	-	-

Model Overview

- Several GNNs for meshes have emerged in recent years, e.g.
 - MeshGraphNet (2021)
 - Multi-Scale MeshGraphNet (2022)
 - Here we use *Hierarchical MeshGraphNet* (2023)
- Quadrilateral mesh used by the model
 - \circ Coarser than the data \rightarrow efficient processing.
 - Nodes are connected with bidirectional edges to its neighbors horizontally, vertically and diagonally (repeated at 3 different resolutions tripling the distance between nodes).
- GNNs are used to
 - 1. **Encode** inputs from the data grid to latent vector representations in each mesh node.
 - 2. **Process** latent node and edge representations using InteractionNet (2016) yielding new latent representations.
 - 3. **Decode** onto the original sea grid to predict a new state.

Training Objective

• Minimize autoregressive loss over multiple timesteps

$$\mathcal{L} = rac{1}{T_{ ext{rollout}}}\sum_{t=1}^{T_{ ext{rollout}}}\sum_{i=1}^{C}\sum_{l=1}^{L_{i}}rac{1}{|\mathbb{G}_{l}|}\sum_{v\in\mathbb{G}_{l}}a_{v}\lambda_{i}\Big(\hat{X}_{v,i}^{t}-X_{v,i}^{t}\Big)^{2}$$

where:

- T_{rollout} is the number of steps in the rollout.
- C is the number of feature channels in the tensor.
- L_i is the number of depth levels for feature *i*.
- \mathbb{G}_l is the set of ocean grid nodes at depth level l.
- a_v is the latitude-longitude area of grid cell v normalized to unit mean.
- λ_i is the inverse variance of time differences for variable *i*.

Model Training

- Trained a 5.6M parameter SeaCast model for 200 epochs using a batch size of 1.
- The number of rollout steps is progressively increased to 4 starting at 60% of the total epochs.
- For 200 epochs this translates to updating the steps at epochs 120, 146, and 172 to 2, 3 and 4 rollout steps, respectively.
- Training took 2 days on 32 AMD MI250x GPUs.

Computational Complexity

Med-PHY

- Requires approximately **80 minutes** to run a bulletin, which includes a 1-day simulation and a 10-day forecast, **using 89 CPU cores**.
- Outputs data for 141 vertical levels.
- Forecast available at both **1-hour and daily mean**.

SeaCast

- Training took 2 days on 32 AMD MI250x GPUs. Performed once, possibility to finetune cheaply.
- Produces a complete **15-day forecast in 11.2 seconds** on a single GPU.
- Equivalent to 0.75 seconds per timestep.
- Forecast **includes 18 depth levels** and provides predictions at a **daily temporal resolution** (dependent on reanalysis).
- Both systems produce outputs at the same 1/24° spatial resolution.

$$\rho = \rho (T, S, p) \qquad \nabla \cdot U = 0 \qquad \frac{\partial p}{\partial z} = -\rho g$$
$$\frac{U_h}{\partial t} = -\left[(\nabla \times U) \times U + \frac{1}{2} \nabla (U^2) \right]_h - f k \times U_h - \frac{1}{\rho_o} \nabla_h p + D^U + F^U$$
$$\frac{\partial T}{\partial t} = -\nabla \cdot (T \ U) + D^T + F^T \qquad \frac{\partial S}{\partial t} = -\nabla \cdot (S \ U) + D^S + F^S$$

 ∂

Salinity and Temperature Forecast at 30 m

Zonal and Meridional Velocity Forecast at 30 m

Bias SeaCast-AIFS vs Analysis

Error vs Analysis for Different Lead Times

Comparison with L4 Satellite SST

SST error at different lead times.

Comparison with L4 Satellite SST

RMSE difference SeaCast-ENS - SeaCast-AIFS

RMSE difference SeaCast-AIFS - Med-PHY

Blue means SeaCas-ENS is better.

Blue means SeaCas-AIFS is better.

Future Work

*

- Personally:
 - Force Dardanelles (open boundary in forecast)
 - Look into training a larger model using e.g. mixed precision training
 - Longer evaluation (currently a month)
- Data-driven sea forecasting more broadly:
 - \circ Higher temporal res for the reanalysis \rightarrow higher res data driven forecast.
 - \circ Tidal input used in analysis/forecast \rightarrow also in reanalysis.
 - Include more depth levels.
 - ML forecast of waves and biogeochemistry also possible given enough data.
 - Possible to do probabilistic / ensemble forecast.
 - Ocean modeling could benefit from foundation models.
 - E.U. WeatherGenerator <u>https://www.ecmwf.int/en/about/media-centre/news/2024/weathergenerator-proje</u> <u>ct-aims-recast-machine-learning-earth-system</u>

Thank you.

preprint

https://arxiv.org/abs/2410.11807

code

https://github.com/deinal/seacast

