Jet Energy Corrections with GNN Regression using Kubeflow

Daniel Holmberg, CERN IT

Kubeflow at CERN

Centralized ML platform to improve resource utilization across CERN

Reduce maintenance work for researchers

Easier access to GPUs

Scaling capabilities

On-premise cluster, using Openstack

Integration with CERN services

SSO, Harbor registry, CSI, Gitlab CI, EOS fs

In production since April 2021

Jet Energy Corrections

Colliding protons at high energies produces color-charged partons

Hadronization gives rise to a spray of color-neutral particles that are clustered into a jet

Measured energy differs from theory due to detector inaccuracies, invisible particles etc.

Can machine learning help with energy calibration?

https://cms.cern/news/jets-cms-and-determination-their-energy-scale

Representing Jets as Particle Clouds

Use detector coordinates to represent jets as **particle clouds**Analogous to **point clouds** in computer vision problems

Learning on Particle Clouds

Map set of particle feature vectors x_i towards correction factor target y

$$f\left(\begin{array}{c} x_4 \\ x_2 \\ x_3 \end{array}\right) = y$$

Learning on Particle Clouds

Map set of particle feature vectors x_i towards correction factor target y

The model must be invariant to the order of the jet constituents

$$f\left(\begin{array}{c} x_4 \\ x_2 \\ x_1 \end{array}\right) = y = f\left(\begin{array}{c} x_1 \\ x_2 \\ x_4 \end{array}\right)$$

Particle Flow Network

ParticleNet

ML Pipeline

Kubeflow Pipelines: "Engine for scheduling multi-step ML workflows"

Define end-to-end ML pipeline as a directed graph

Start with running a <u>Katib AutoML</u> experiment

Export the optimal model

Finally serve using **KServe**

Training

Dataset with 14 million jets = 10GB stored on S3

Minimize mean absolute error (MAE) loss

Tune hyperparameters with Katib using Random Search to reach a lower loss

Scalability

Multi-node training by using the PyTorchJob operator

Multiple CPU workers can read data simultaneously

Additionally, many Katib trials can be run in parallel

Monitor training with Tensorboard component

Inference

Export best PyTorch model to **ONNX**

Serve model with Nvidia Triton inference server

Use Triton's Python client to request predictions and get usage statistics

Analyze inference time and plot physics result in a notebook server on Kubeflow

Model Servers						+ NEW MODEL SERVER	
Status	Name	Age	Predictor	Runtime	Protocol	Storage URI	
Ø	particle-net-regressor	1 month ago	Triton	21.09-py3		s3://jec-data/particle-net-regressor-25a03c	
	pfn-regressor-ea37f4	2 months ago	Triton	21.09-py3		s3://jec-data/pfn-regressor-ea37f4	

Demo

Conclusions

ML can provide **significant improvements** in high energy physics use cases

Jet energy regression example

Energy resolution improved by 10%

Flavor dependence improved by factor of 3

Kubeflow greatly facilitates the scalability of large-scale workloads

Excellent mutual integration of components (Pipelines, AutoML, operators, KServe)

Customizable and reproducible environments

Predictor pods scale up to support concurrent inference requests

Material

Kubeflow Pipeline

https://gitlab.cern.ch/dholmber/jec-pipeline

Kubeflow inference

https://gitlab.cern.ch/dholmber/jec-inference

CERN Kubeflow docs

https://ml.docs.cern.ch

KubeCon Recording

https://youtu.be/iqbsbXZDjs8

Material

JEC with GNN thesis

https://helda.helsinki.fi/handle/10138/344118

Thesis code

https://gitlab.cern.ch/dholmber/jec-gnn

https://gitlab.cern.ch/dholmber/ml-jec-vars

Learning to Discover

https://indico.ijclab.in2p3.fr/event/5999/timetable/#32-jet-energy-corrections-with

Thank you for the attention!

Questions?

Particle Flow Network [arXiv:1810.05165]

An MLP ϕ is applied to every particle x_i

$$\mathbf{h}_i = \phi(\mathbf{x}_i)$$

Aggregate latent features h_i using sum pooling (order invariant operation)

Feed into another MLP p mapping to the regression target

$$f(\mathbf{X}) =
ho\left(\sum_{i \in \mathcal{V}} \phi(\mathbf{x}_i)\right)$$

ParticleNet [arXiv:1902.08570]

Initial graph in (η, φ) space — updated after each edge convolution

Local patch for every particle using *k*-nearest neighbors

Define edge features for each center-neighbor pair

$$\mathbf{e}_{ij} = \psi(\mathbf{x}_i, \, \mathbf{x}_j)$$

Aggregate using average pooling and concatenate with skip connection

$$\mathbf{h}_i = \phi \left(\mathbf{x}_i, \frac{1}{k} \sum_{j \in \mathcal{N}_i^k} \psi(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Pool outputs and feed into another MLP mapping to the target

$$f(\mathbf{X}, \mathbf{A}) = \rho \left(\frac{1}{n} \sum_{i \in \mathcal{V}_i^n} \phi(\mathbf{x}_i, \mathbf{X}_{\mathcal{N}_i^k}) \right)$$

