Emerging Computing Architectures in Machine Learning

Daniel Holmberg 22.3.2020

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Introduction Cloud and ML background

02

03

Cloud Computing

Compute resources leased in an on-demand fashion

Emergence of Edge

-

Importance of latency

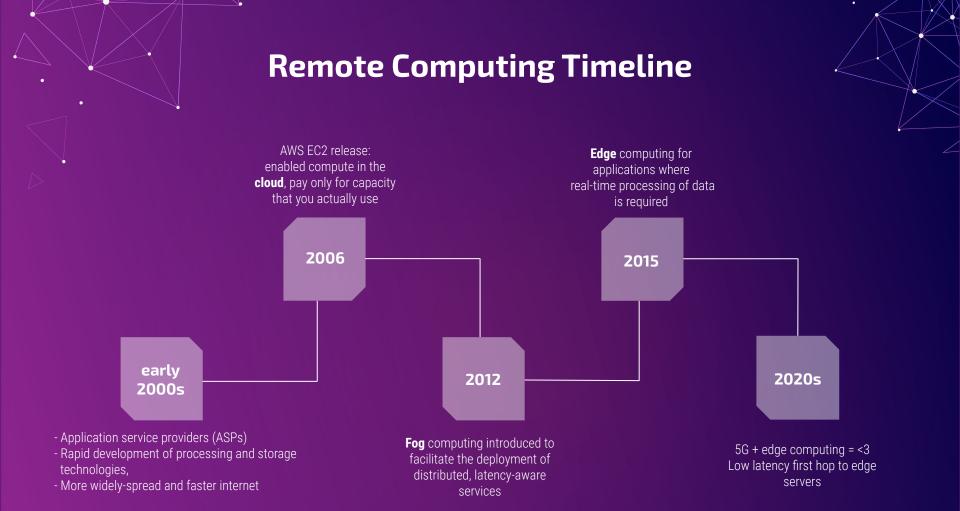
TABLE OF CONTENTS

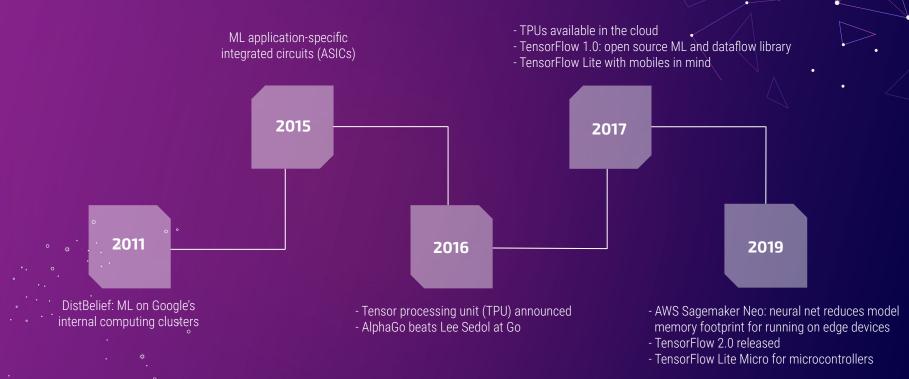
04

Fog Computing IoT infrastructure scalability

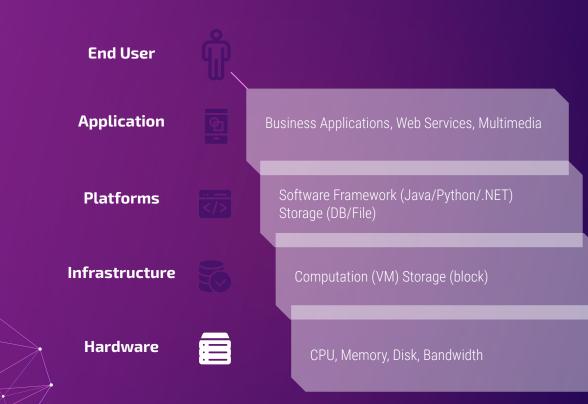
05

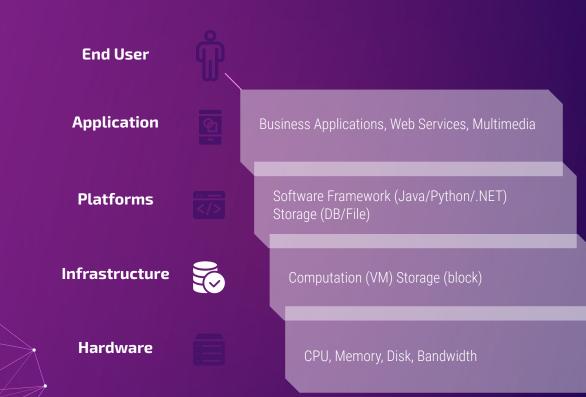
ML Implementation

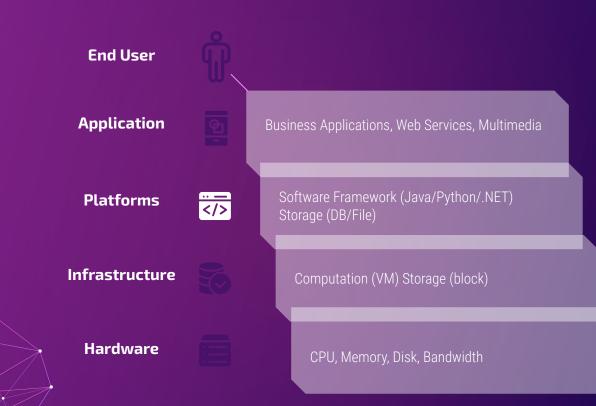

Machine learning IoT application

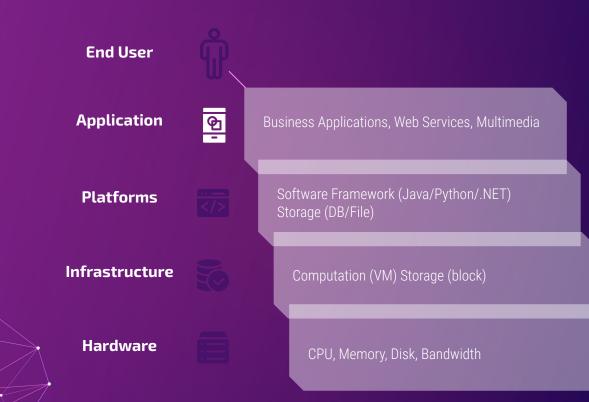

Conclusion Concluding words

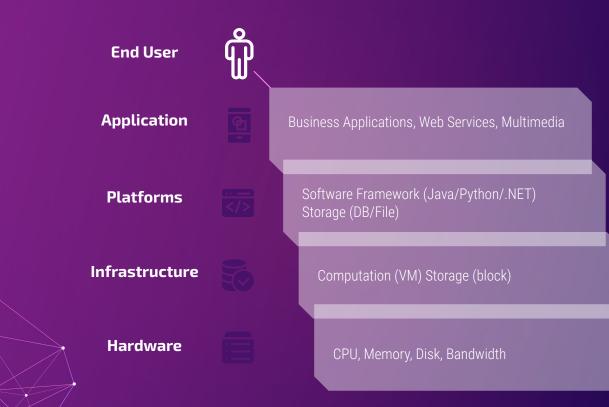
01 Introduction

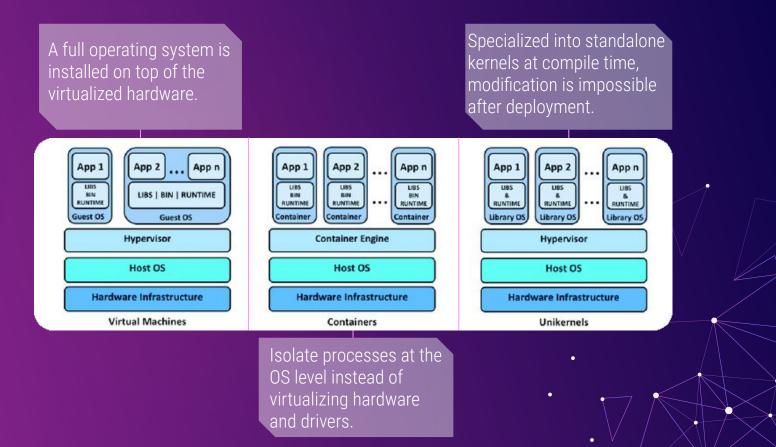

-




Modern ML Computing Timeline




Cloud Computing



Virtualization

12

Virtualization

R EMU		MIRAGE OS
App 1 UBS RUNTIME Guest OS App 2 App n LIBS BIN RUNTIME Guest OS	App 1 UBS RUNTIME Container UNTIME Container	App 1 UBS RUNTIME Library OS App 2 UBS RUNTIME Library OS App 1 UBS RUNTIME Library OS
Hypervisor Host OS	Container Engine Host OS	Hypervisor Host OS
Hardware Infrastructure	Hardware Infrastructure	Hardware Infrastructure
Virtual Machines	Containers	Unikernels
		•
	docker	

Virtualization

	Instantation time	lmage size	Programming language dependency	Hardware portability
VM	~5/10 s	~ 1000 Mb	No	High
Container	~800/1000 ms	~ 50 Mb	No	High
Unikernel	~< 50 ms	~< 5Mb	Yes	High
				•

0

 \mathcal{K}

Architectural Service Models

laaS

Control over operating systems, storage, and deployed applications, but not the underlying physical components. Customer provided with software development frameworks: programming languages, libraries and services + configuration of the application-hosting environment.

PaaS

Access to provider's application, but no modification of underlying code or infrastructure. Only user-specific application configuration settings. Cloud provider toolkits with user friendly interfaces and APIs with access to ML algorithms, analytics and visualisation capabilities.

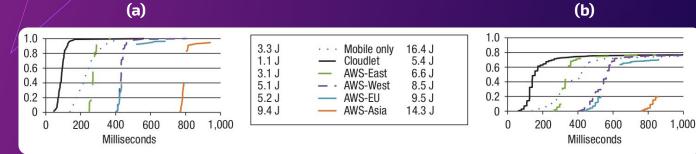
MLaaS

Architectural Service Models

laaS

Control over operating systems, storage, and deployed applications, but not the underlying physical components. Customer provided with software development frameworks: programming languages, libraries and services + configuration of the application-hosting environment.

PaaS


Access to provider's application, but no modification of underlying code or infrastructure. Only user-specific application configuration settings. Cloud provider toolkits with user friendly interfaces and APIs with access to ML algorithms, analytics and visualisation capabilities.

MLaaS

· OB · · Emergence of Edge

Edge Computing Need

Mobile response time distribution and per-operation energy cost of an (a) augmented reality and (b) face recognition application.

An image from a mobile device in Pittsburgh is transmitted over Wi-Fi to a cloudlet or an AWS datacenter. The graphs demonstrate the need for low-latency offload services.

Advantages of Edge Computing

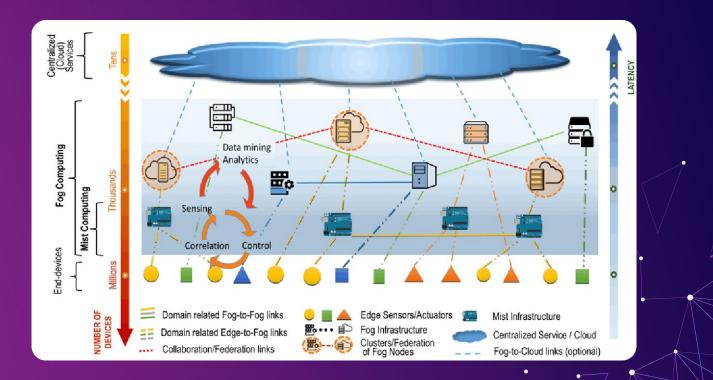
1.

physical proximity **lowers end-to-end latency** and achieves **high bandwidth**

2.

feed to cloudlets for **feature extracting** and send only that to the central server

3.


cloudlets can invoke **own privacy policies** prior to releasing IoT data prior further to the cloud provider

4.

if a cloud service becomes unavailable, the cloudlet can conceal it temporarily with a **fallback service**

Fog Computing

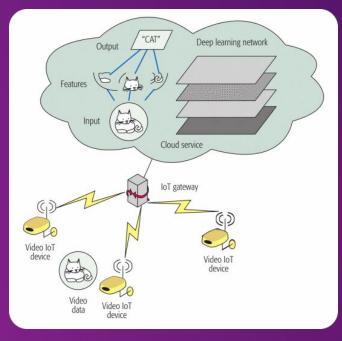
Cloud-based Ecosystem

٠

•

Terminology

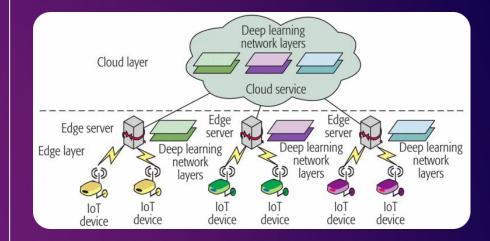
	Components	Location	Use
Fog	Physical: gateways, servers, routers, Virtual: VMs, virtualized switches, cloudlets,	Multi-layer architecture between cloud datacenters and end devices	Computation, networking, storage, control and data-processing acceleration
Mist	Microcomputers and microcontrollers	Edge of the network fabric	Feed into fog computing nodes
Edge	Same as fog except limited to a small number of peripheral devices	IoT Network: layer with end-devices and users	Run specific applications in a fixed logic location and provide a direct transmission service


•

0

•

ML Implementation


Deep Learning IoT Application

- Task: IoT video recognition
- Videofeed bit-rate: 3000 kb/s
- Enters neural net initial layer
- Output from previous layer to next layer
- Target features extracted from final layer

Deep Learning IoT Application

- Split neural net at suitable layer
- Feed reduced to 2300 kb/s in edge server
- Balancing:
 - Latency benefit from more preprocessed data to the cloud
 - Limited capacity and power of fog node processing

O6 Conclusion

Recap - On-demand datacenter - Feed into fog resources - Reside in network fabric - SaaS, PaaS, laas and - Microdevices MLaaS Cloud Mist Edge Fog - Multi-layer architecture - Few devices

- IoT infrastructure scalability

- Mobile applications' interactive performance in mind

"Since the 1960s, computing has alternated between centralization and decentralization. The centralized approaches of batch processing and timesharing prevailed in the 1960s and 1970s. The 1980s and 1990s saw decentralization through the rise of personal computing. By the mid-2000s, the centralized approach of cloud computing began its ascent to the preeminent position that it holds today. Edge computing represents the latest phase of this ongoing dialectic"

- Dr. M. Satyanarayanan

THANK YOU

daniel.holmberg@helsinki.fi

Credits: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Figure References

- p. 12 & 13 Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jörg Ott. Consolidate iot edge computing with lightweight virtualization. IEEE Network, 2018.
- p. 18 K. Ha et. al. The impact of mobile multimedia applications on data center consolidation. p. 166–176, 2013.
- p. 21 National Institute of Standards and Technology. Fog Computing Conceptual Model: NIST SP 500-325 500-291. CreateSpace Independent Publishing Platform, 2018.
- p. 24 & 25 He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for the internet of things with edge computing. IEEE Network, 32:96–101, 01 2018.