
Master’s thesis

Master’s Programme in Data Science

Jet Energy Corrections with Graph Neural
Network Regression

Daniel Holmberg

February 28, 2022

Supervisor: Prof. Teemu Roos

Examiner: Dr. Henning Kirschenmann

University of Helsinki

Faculty of Science

P. O. Box 68 (Pehr Kalms gata 5)
00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Daniel Holmberg

Jet Energy Corrections with Graph Neural Network Regression

Master’s thesis February 28, 2022 70

Jets, Particle Physics, CMS, Geometric Deep Learning, GNN, Regression

Kumpula Campus Library

The LHC particle accelerator at CERN probes the elementary building blocks of matter by colliding
protons at a center-of-mass energy of

√
s = 13 TeV. Collimated sprays of particles arise when quarks

and gluons are produced at high energies, that are reconstructed from measured data and clustered
together into jets. Accurate measurements of the energy of jets are paramount for sensitive particle
physics analyses at the CMS experiment. Jet energy corrections are for that reason used to map
measurements towards Monte Carlo simulated truth values, which are independent of detector
response.

The aim of this thesis is to improve upon the standard jet energy corrections by utilizing deep
learning. Recent advancements on learning from point clouds in the machine learning community
have been adopted in particle physics studies to improve jet flavor classification accuracy. This
includes representing jet constituents as an unordered set, or a so called “particle cloud”. Two high
performant models suitable for such data are the set-based Particle Flow Network and the graph-
based ParticleNet. A natural next step in the advancement of jet energy corrections is to adopt a
similar methodology, only changing the problem statement from classification to regression.

The deep learning models developed in this work provide energy corrections that are generically ap-
plicable to differently flavored jets. Their performance is presented in the form of jet energy response
resolution and reduction in flavor dependence. The models achieve state of the art performance for
both metrics, significantly surpassing the standard corrections benchmark.

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Acknowledgements

The research topic for this thesis was crafted up together with Associate Prof. Mikko
Voutilainen and Dr. Henning Kirschenmann last fall. I would like to thank Mikko for
providing me with employment at Helsinki Institute of Physics and enrolling me to the
CMS Data Analysis School hosted by Fermilab. It allowed me to pick up necessary
background information on experimental particle physics and gave me the head start I
needed for this endeavor. I want to express my sincerest thanks to Henning for guiding
me through this project. He is more knowledgeable on jet physics than one could
possible imagine. Thanks also to Prof. Teemu Roos for giving useful feedback on my
thesis, especially on sections related to machine learning.

The latter half of my master’s work took an unexpected turn when I found myself at
CERN in the cloud infrastructure group. During my time here I have had the chance
to interact with many open minded and clever people from all corners of the world.
My IT supervisor Ricardo Rocha and my physics advisor Dr. Clemens Lange have
provided me with interesting ideas and perspectives for my machine learning related
tasks here. Thanks also to my colleague Dejan Golubovic who has been a good sport
both on and off the football pitch.

However, getting to this point in my studies and career would have been a lot harder
without the unending support of family and friends. I want to thank my fellow science
students for the good times and the many study sessions we have spent together. I
am looking forward to many more years of fun shenanigans. Lastly, I wish to thank
my family for always being there for me no matter what.

Geneva, December 2021
Daniel Holmberg

v

Contents

1 Introduction 1

2 Particle physics at CMS 3
2.1 Standard Model . 3
2.2 Feynman diagrams . 5
2.3 Quantum chromodynamics . 5
2.4 Particle interactions with matter . 6
2.5 Large Hadron Collider . 7
2.6 Compact Muon Solenoid . 9

3 Event simulation 13
3.1 Hard scatter . 14
3.2 Parton shower . 15
3.3 Hadronization . 16
3.4 Underlying event . 17
3.5 Detector simulation . 17

4 Event reconstruction 19
4.1 Particle Flow algorithm . 19
4.2 Jet clustering . 21
4.3 Jet calibration . 22

4.3.1 Pileup mitigation . 22
4.3.2 Response corrections . 23
4.3.3 Residual corrections . 24
4.3.4 Flavor corrections . 24

5 Geometric deep learning 27
5.1 Learning in high dimensions . 27
5.2 Geometric priors . 30
5.3 Geometric blueprint for deep learning 32

vii

viii

5.4 Learning on sets and graphs . 33

6 Jet energy regression 39
6.1 Dataset . 39
6.2 Target and loss function . 44
6.3 Models . 45

6.3.1 Mutual architectural choices . 46
6.3.2 Particle Flow Network . 47
6.3.3 ParticleNet . 49

6.4 Implementation and training . 51

7 Results 53
7.1 Model complexity . 53
7.2 Flavor dependence . 54
7.3 Jet energy resolution . 57

8 Conclusion 61

Bibliography 63

Appendix A pT binned results 69

1. Introduction

The Large Hadron Collider (LHC) is the world’s largest particle collider built to ex-
perimentally probe the Standard Model of particle physics. Protons are accelerated in
opposite directions almost to the speed of light until they are made to collide at certain
interaction points, one being at the center of the Compact Muon Solenoid (CMS) de-
tector. The collisions give rise to a cascade of particles, which are recorded by various
measurement devices as they traverse through the detector. The signals are combined
in an attempt to reconstruct the particles that emerged from the collisions. Monte
Carlo simulations are used to aid with the reconstruction process. The components of
an event are simulated starting from the hard process that produces collinear parton
showers that then undergo hadronization. The detector is also simulated to account
for any irregularities in the response. Final state particles are clustered according to
the initial state partons they originate from, forming so called jets.

The energy generally differs significantly between the reconstructed jets and simulated
counterparts. There are multiple reasons for this: the energy will for example be
smeared due to the finite resolution of the detector and energy is also lost to invisible
particles such as neutrinos etc. A series of calibration procedures are in place at the
CMS experiment to deal with any such discrepancies [1]. However, jet energy correc-
tions can potentially be improved by using machine learning since it has a track record
of improving high energy physics analyses [2]. Neural networks especially have proven
to be very performant in many LHC applications [3]. Because of the large dataset
available for this regression problem, and the impressive gain deep learning has pro-
duced for b-jet energy regression [4], neural networks will be used in this work too. The
latest developments in the field of deep learning in high energy physics is using graph
neural networks (GNNs) where applicable [5]. They enable training on jet constituents
in their most generic representation as unordered sets. Graphs of the particles can be
created with detector coordinates, giving some initial locality information for the deep
learning model to work with. The expressive power of GNNs have proven very useful
for jet flavor classification [6, 7], and they are therefore employed to improve jet energy
corrections in this study.

1

2 Chapter 1. Introduction

The thesis is structured as follows: Chapter 2 gives an overview of some particle physics
theory in addition to the experimental setup; the steps in the Monte Carlo event and
detector simulation are presented in Chapter 3; the reconstruction and calibration pro-
cess is discussed in Chapter 4; deep learning theory is introduced from the perspective
of geometric deep learning in Chapter 5; the methods and implementation of graph
neural network regression for jet energy corrections are explained in Chapter 6; the
results of the aforementioned regression are shown in Chapter 7; and lastly, Chapter 8
contains some concluding remarks.

2. Particle physics at CMS

Particle physics is at the heart of our understanding of nature. It describes the fun-
damental building blocks of the universe, and their interaction. Our current under-
standing of the phenomena that happen on the smallest scales have successfully been
described by the Standard Model, which provides a unified picture of the different
particles and the forces between them. To validate particle physics theories collider
experiments have been built, with the largest one being the LHC. Particles are acceler-
ated in opposing directions and made to collide at certain interaction points. Detectors
such as CMS then measure the outcome of those collisions. In this chapter some of the
underlying theory in particle physics will be introduced, and after that the components
of the CMS experiment are explained.

2.1 Standard Model

The Standard Model of particle physics describes three of the four fundamental forces
of nature: the electromagnetic, weak, and strong interactions. Gravity is the only one
not explained by the Standard Model. However, the gravitational force is so weak at
the minuscule scale of particles that its effect is negligible. Apart from describing the
interactions, the Standard Model is also able to classify all known elementary particles.
The model has been remarkably successful with predicting previously unobserved par-
ticles and phenomena, and has to this date withstood thorough experimental scrutiny
[8].

The Standard Model is a relativistic quantum field theory based on local gauge sym-
metries. Particles are represented as local excitations of quantum fields. The Standard
Model can be written as a gauge group with three continuous symmetry groups, or Lie
groups, representing three distinct fundamental forces of nature:

SU(3)c × SU(2)L × SU(1)Υ. (2.1)

The Abelian Lie group U(1)Υ describes the electromagnetic interactions and the sub-
script Υ represent the weak hypercharge. The non-Abelian Lie group SU(2)L describes

3

4 Chapter 2. Particle physics at CMS

the (electro)weak interactions with a subscript L meaning that only particles with left-
handed chirality interact weakly. Lastly, the non-Abelian Lie group SU(3)c describes
strong interactions where c indicates the color charge. Each Lie group has a cor-
responding gauge field, and all interactions in the Standard Model are mediated by
spin-1 gauge bosons which are quanta of the gauge fields. For the electromagnetic field
the photon acts as mediator, the weak interaction has the W+, W− and Z bosons as
mediators, and the strong force is carried by gluons.

Matter particles are represented as spin-1/2 fermions in the Standard Model. They
exist in three generations as seen in Fig. 2.1. Each generation contains two quarks: one
electrically positively charged up-type and one negatively charged down-type, as well
as two leptons: one negatively charged particle and a corresponding neutral neutrino.
All stable matter in the universe is made up of the particles in the first generation,
which are the lightest of all fermions. The particles in the remaining two generations
are heavier and decay into the lighter ones.

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²

⅔

½

up

d
≃4.7 MeV/c²

−⅓

½

down

c
≃1.28 GeV/c²

⅔

½

charm

s
≃96 MeV/c²

−⅓

½

strange

t
≃173.1 GeV/c²

⅔

½

top

b
≃4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≃105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≃1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV/c²

0

1

Z boson

W
≃80.39 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃124.97 GeV/c²

0

0

higgs

Figure 2.1: The Standard Model of particle physics. Brown loops indicate which of the five bosons
(in red) couple to which of the twelve fermions (in purple and green) [9].

In addition to matter there is also antimatter. Antimatter consists of anti-particles
which can be regarded as separate from their regular particle counterparts. However,
they are excitations of the same quantum field, and they differ only in that their charges
are opposite. A particle and the corresponding anti-particle annihilate when they

2.2. Feynman diagrams 5

collide with each other. It is still unknown why there is more matter than antimatter
in the universe, but without this asymmetry nothing would exist.

Leptons and quarks interact differently with the fundamental forces. Quarks are af-
fected by the electromagnetic, weak and strong strong force whereas leptons only inter-
act with the electromagnetic and weak forces. The reason for this is that only quarks
carry the color charge needed for strong interactions.

All the particles in the Standard Model except the neutrinos obtains their masses from
their coupling with the Higgs field. The process is referred to as the Brout-Englert-
Higgs mechanism. The spin-0 Higgs boson is the visible manifestation of the Higgs field.
Where the neutrinos’ mass come from is another open question within the Standard
Model.

2.2 Feynman diagrams

Interactions between particles in the Standard Model can be represented using Feynman
diagrams. They are constructed using rules from perturbation theory in quantum
mechanics, and give a visualization of transitions between states in particle physics
processes. Initial state particles are shown on the left-hand side of a Feynman diagram,
and the final state particles are shown to the right. The probability amplitude for a
particle to go from one place to another is shown as a line. Lines with arrows represent
matter particles whereas squiggly lines represent bosons. For anti-particles the arrows
point backwards in time. Particles meet at interaction points shown as vertices, which
also have probability amplitudes.

In principle there can be an infinite number of Feynman diagrams for a process by
adding an arbitrary amount of intermediary interactions. However, following pertur-
bation theory the simplest, lowest order diagram is the most significant one, and in
most cases sufficient for describing a given process. The probability to obtain each
final state can be calculated using the total probability amplitude of all the diagrams
to some chosen order.

2.3 Quantum chromodynamics

Quantum chromodynamics (QCD) is the theory that describes strong interactions be-
tween quarks and gluons, collectively known as partons. QCD has an analog to electric
charge called color charge. Borrowing from the RGB color system red, green and blue
colors are used in QCD. When combined, these colors create white which is regarded

6 Chapter 2. Particle physics at CMS

as color neutral in QCD. Combining color and anti-color has the same effect. Baryons
are composed of three quarks or antiquarks while mesons are made of a quark and an
antiquark. Together they are known as hadrons which are colorless bound states of
quarks.

QCD is based on the SU(3)c gauge symmetry group with eight gauge bosons, or gluons
with different mixtures of color charges. Because the symmetry group is non-Abelian,
the gluons can interact and exchange colors with themselves. This causes the vacuum
to polarize which in turn increases the force linearly with distance greater than about
a femtometer. The electromagnetic and weak forces become weaker with increasing
distance so in that sense the strong force stands out. It also results in some interesting
properties. Firstly, there is asymptotic freedom meaning that partons behave as free
or weakly bound particles only at very high energies, or equivalently at very small
distances. The second phenomenon is called color confinement which is that no free
color charged parton can exist by itself. If partons in a hadron are separated from
each other, the energy will grow until two quark-antiquark pairs are spontaneously
produced. So instead of isolating a color charge the initial hadron is turned into a pair
of hadrons.

2.4 Particle interactions with matter

To prove or extend theories in particle physics, experiments are set up where parti-
cles collide with high energies. New particles emerge from the collisions, but of those
only the electron, proton, photon, and the effectively undetectable neutrinos are sta-
ble. Unstable particles with lifetimes greater than approximately 10−10 s, (e.g. muons
or neutrons) can propagate several meters, and can be detected directly by experi-
ments. Some particles are so short lived that they decay before they have traveled
far enough from the interaction point to be detected. Only their decay products can
thus be detected. The methods for detecting long-lived particles are presented in this
section.

The interactions of high energy photons with a medium is dominated by e+e− pair
production process shown in Fig. 2.2a. When high energy electrons interact with
matter they radiate bremsstrahlung photons, which in turn produce e+e− pairs. The
number of pairs increase exponentially leading to a cascade of electrons, positrons and
photons called an electromagnetic shower. The average energy 〈E〉 of the particles
created in the shower decreases at a pace proportional to 2x, where x is the average
distance between splits, or radiation length. The shower continues to develop until 〈E〉
falls below a critical energy level, after which electrons and photons lose energy mainly

2.5. Large Hadron Collider 7

from ionization.

(a) e+e− pair production (b) Bremsstrahlung

Figure 2.2: Feynman diagrams for high energy photon and electron interactions in the electrostatic
field of a nucleus N with charge +Ze [8].

All charged particles can produce bremsstrahlung. However, the rate is inversely pro-
portional to the square of the mass of a particle. Muons are 200 times more mas-
sive than electrons, as can be see from Fig. 2.1. Thus, the rate of energy loss to
bremsstrahlung is suppressed by a factor of 40 000 for muons compared to electrons.
Ionization is for this reason the dominant energy-loss process for muons.

Relativistic hadrons interact strongly with the nuclei of a medium. This primary hard
interaction produce new particles, which in turn interact further downstream in the
medium. A cascade of particles is formed, called a hadronic shower. The distance
between interactions in hadronic showers, or nuclear interaction length, is significantly
longer than the radiation length in electromagnetic showers. Hadronic showers are
also much more variable compared to the uniformly behaving electromagnetic showers,
because hadronic interactions can produce many different final states. In addition to
undergoing strong interactions, charged hadrons lose energy by the ionization process
when they traverse a medium.

2.5 Large Hadron Collider

The LHC is the world’s most powerful particle collider. It is operated the European
Organization for Nuclear Research (CERN), and lies circa 100m underground on the
Swiss-French border close to Geneva. The collider resides in a tunnel measuring 27km
in circumference. The LHC is designed to collide proton beams with a center-of-mass
energy

√
s of up to 14 TeV [10]. During the last period of data-taking at LHC, Run

2, protons collided with a center-of-mass energy of
√
s = 13 TeV. Protons are made to

collide at certain interaction points along the beamline, where large detectors measure
what the collisions produce.

Figure 2.3 show the accelerator complex. Hydrogen atoms are ionized at the source,

8 Chapter 2. Particle physics at CMS

and the resulting protons are accelerated using a linear accelerator up to an energy
of 50 MeV. From there they go into the Proton Synchrotron Booster giving them an
energy of 1.4 GeV. Next, they are injected into the Proton Synchrotron where they are
accelerated to 25GeV. Then, in the Super Proton Synchrotron they attain an energy
of 450 GeV, and finally after that the protons are fed into the two beams going in
opposite direction in the LHC ring where each of them can have an energy of up to 7
TeV corresponding to a speed of 0.99999999c, where c is the speed of light.

Figure 2.3: Schematic of the LHC complex as seen from above. Protons emerge from the source
station, and go through multiple preaccelerators before finally entering the LHC. Collisions take place
at four crossing points. Detectors are positioned around these crossing point to take measurements,
with the largest being CMS, ATLAS, ALICE and LHCb [11].

The protons in the two LHC pipes are grouped into bunches with a 25 ns time delay,
or bunch spacing, between them. This is equivalent to a bunch crossing frequency of
about 40 MHz. At the interaction points the beams are merged into one leading to the
bunches of protons colliding with each other. Multiple interactions happen for every
bunch crossing, which is a phenomenon called pileup. A higher pileup make it more
difficult to determine where the collision products originate from.

To increase the probability of detecting rare particle interactions at LHC the luminosity
is increased. It’s a measure of the number of potential collisions per surface unit over
a given period of time. Instantaneous luminosity L is defined as:

L = f
n1n2

A
= 1
σ

dN
dt (2.2)

2.6. Compact Muon Solenoid 9

where f is the bunch crossing frequency, n1 and n2 are the number of protons in
each colliding bunch respectively, and A is the overlapping cross-sectional area of the
bunches. Because A usually is not known very precisely, luminosity often times is
expressed in terms of the event rate dN/dt and the interaction cross section σ, which
describes the likelihood of a process to occur. The LHC is designed for a luminosity of
1034 cm−2s−1.

2.6 Compact Muon Solenoid

The CMS is a general purpose particle detector located at the LHC access point 5 as
seen in Fig. 2.3. With a weight of 14 000 tonnes, a length of 29 m, and a diameter of 15
m, it is considered to be a compact particle detector. One of the distinctive features of
CMS, is that it has large gas chambers allowing for precise muon measurements. The
CMS detector is built around a large superconducting solenoid magnet that produces
a 3.8 T magnetic field [12]. The field bends electrically charged particles emerging from
collisions at the middle of the detector where the interaction point is located.

The residue created by colliding protons in the center of the detector is measured by
surrounding subdetectors that cover most directions. A special right-handed coordinate
system, shown in Fig. 2.4, is adopted by the CMS experiment. The x-axis points
inwards towards the center of the LHC ring, whereas the y-axis points perpendicularly
upwards with respect to the horizontal plane of the LHC ring, and lastly the z-axis
corresponds to the direction of the beamline. With these coordinates φ can be defined
as the azimuthal angle measured from the x-axis in the xy-plane, and θ is the polar
angle measured from the z-axis.

x

y

z

~p

LHCCMS

ATLASALICE

LHCb

φθ

Figure 2.4: A diagram of the CMS coordinate system [13].

The angle of a particle relative to the beam axis is often expressed in terms of the
pseudorapidity denoted as η, that can be calculated from θ as:

η = − ln
(

tan θ2

)
. (2.3)

10 Chapter 2. Particle physics at CMS

Differences in pseudorapidity are invariant under Lorentz boosts along the z axis. This
is a useful feature when the colliding partons have different amount of energy because
in that case the particles produced come out near one end of the detector. The graph
can then be translated to the center-of-mass frame which is easier to analyze. The
detector is divided into regions based on pseudorapidity. The barrel region |η| < 1.3,
and the endcap region 1.3 < |η| < 3.0 are collectively known as the central region. The
region where |η| > 2.5 is referred to as the forward region.

The CMS detector contains a number of subdetectors responsible for detecting different
types of particles. The essential components of the detector is illustrated in Fig. 2.5.
The silicon tracker sits closest to the interaction point. When charged particles moves
through doped silicon wafers in the tracker, the ionization process creates electron-hole
pairs. A voltage is applied across the silicon causing the holes to drift in the direction
of the electric field to a nearby conductor resulting in a pulse that can be measured.
Neutral particles move straight through the tracker.

Figure 2.5: A transverse slice of the CMS detector. Electrons and photons are caught by the ECAL,
hadrons are captured in the HCAL, and muons traverse through many layers of steel return yoke,
leaving a trail of ionization behind [14].

The second layer in the CMS detector is the electromagnetic calorimeter (ECAL). The
ECAL is made of lead tungstate which is an optically transparent crystal, and an inor-
ganic scintillator. Scintillation refers to the phenomenon when light of a characteristic
spectrum is emitted following the absorption of radiation. Electrons and high-energy
photons produce scintillation lights which is then collected and amplified by photon
detectors. The amount of light produced is proportional to the energy of the original
electron or photon.

2.6. Compact Muon Solenoid 11

The hadron calorimeter (HCAL) surrounds ECAL in the CMS detector. The HCAL is
responsible for capturing the signal of hadrons. Because of the relatively large distances
between nuclear interactions in hadronic showers, the HCAL has to occupy a significant
volume of the detector. The HCAL is made up of alternating high-density absorber
layers where the showers can develop, and thin scintillator layers for sampling energy
deposits. The signals captured by the scintillation layers are summed up to give a
measure of the hadronic showers’ energy.

The muons produced by the collision lose energy mainly from ionization. They can be
distinguished from other charged particles captured by the calorimeters since they only
leave trails of ions, whereas all other charged particles interact in other ways as well.
Muons are also highly penetrating particles as explained in Section 2.4, meaning that
they usually traverse the entire detector. The majority of the CMS detector’s volume
is occupied by components dedicated to detecting muons, called muon chambers. They
are interleaved between the steel return yokes in the detector as seen in Fig. 2.5. Muon
chambers contain positively charged wires with ionizable gas surrounding them. When
muons passes through the chambers they knock electrons off the atoms in the gas,
that drift towards the positively charged wires. By registering where along the wire
electrons hit, it is possible to calculate the muons’ trajectories.

Because collisions happen at a frequency of 40 MHz, it is impossible to store all of
the data produced by the CMS detector. Therefore, a trigger system is used filter
out unwanted data. The initial level-1 trigger (L1) uses very low-level information
about the event to decide whether or not to keep it. The data processing for L1 takes
approximately 1 µs and is run on field programmable gate arrays (FPGAs). An FPGA
is an integrated circuit that can be configured using a hardware description language. It
can execute algorithms orders of magnitude faster than a software program. Currently,
the L1 trigger outputs events to the high-level trigger (HLT) at a rate of 100 kHz. The
HLT is a software based trigger that partially reconstructs events to be able to make
more informed decisions of which events to keep. The HLT outputs selected events to
offline storage with a frequency of 100 Hz. A very small fraction of all events are saved
in the end.

3. Event simulation

Simulations of particle collisions are used to help extract information from the CMS
detector. Both the interactions of colliding particles and the detector itself can be
simulated because the physical processes that occur in the accelerator and the detectors
are known on a theoretical level. Event simulation is based on the Monte Carlo method
that uses pseudorandom numbers to simulate event-to-event fluctuations. A large
number of events are generated in a way that the probability to produce an event with
a given list of final-state particles is approximately that of the real world.

The most prominent Monte Carlo event generators used in high energy physics are
PYTHIA [15] and HERWIG [16]. They use a set of parameters for modeling that can
vary depending on the parameter tune that is used. Examples of such are the CUET
[17] and CP [18] parameter tunes. To generate parton-level events there are additional
software packages such as MADGRAPH [19] and POWHEG [20]. The event generators give
an idealized picture of the measurement in the detector. Inaccuracies in the physical
measurement needs to be taken into account, and for that purpose detector simulations
are used. GEANT4 [21] is used at CMS for simulations of the passage of particles through
matter, and is like event simulation also based on Monte Carlo methods.

The various steps used for simulating the collision events are outlined in this chapter.
Fig. 3.1 gives overview of the whole process, starting from two protons (red circles)
coming from opposite directions, interacting in a process called hard scatter depicted as
a black blob in the middle. Constituents of the colliding protons interact and produce
quarks, leptons, bosons or even hypothetical particles from some new theory. Any new
particles with color charge, such as quarks and gluons, radiate virtual gluons which in
turn can produce quark-antiquark pairs or emit even more gluons. This leads to the
formation of parton showers shown as brown in the schematic. The particles give up
more and more energy in the iterative parton shower, until eventually triggering the
hadronization process (yellow ovals). There are also some leftover hadrons from the
hard process that are separate from the parton showers creating an underlying event
seen as a green area in the figure. Detector simulation is added on top of the simulated

13

14 Chapter 3. Event simulation

event to give a realistic picture of the event.

Figure 3.1: An illustration of the simulation steps in Monte Carlo event generator for hadron-hadron
collisions [22].

3.1 Hard scatter

The first step of event simulation is to model the hard scatter. Scattering occurs at
the center of proton-proton collisions, and it is “hard” in the sense that the momentum
transfer is large. This means that the momentum of incoming and outgoing partons
have changed significantly due to colliding head on and having high initial kinetic
energy. By sampling the parton distribution function (PDF) it is possible to get the
momenta of interacting constituents. The PDF f(x,Q2) gives the probability that a
parton carries a certain fraction x of the corresponding proton’s momentum for an
interaction with momentum transfer Q. Because the physics inside protons is non-
perturbative the PDFs are determined experimentally at lower energies and in other
processes. They are then evolved to higher scales using QCD evolution equations for
parton densities. Since PDFs are derived from experiments, they give rise to uncertainty
in the simulation process, especially when sampled in the low momentum fraction
region.

Hard processes are generated by selecting two partons from the colliding protons as
initial particles according to their PDFs. The cross-section, i.e. the probability that a
specific process ij → kl takes place, can be calculated as:

σij→kl =
∫ 1

0

∫ 1

0
dxidxjfi(xi, Q2)fj(xj, Q2)σ̂ij→kl (3.1)

where σ̂ij→kl is the parton-level cross section. The latter is a constant derived from
integrating the matrix element for the corresponding process. The matrix element can

3.2. Parton shower 15

be deduced using rules knowing the Feynman diagram of the interaction. Since the
partons are free particles both in the initial and final state, the collision’s energy must
be high enough for them to achieve asymptotic freedom.

The Monte Carlo method is used by event generators to integrate the cross section
by sampling events on random. The precision can be adjusted by varying the amount
of terms corresponding to an interaction’s Feynman diagram. Currently hard scatter
simulations use leading order or next-to-leading order expansion. What has been mod-
eled so far is the very core of the collision, and out flies a couple of partons with high
momentum.

3.2 Parton shower

Because the partons emerging from hard scatter are accelerating very fast, they will ra-
diate gluons, the same way accelerating electric charges emit photons. However, unlike
the photons which have no electric charge, gluons do have charge in their respective
force field, i.e. color charge. Because of that, they can emit further radiation, leading
to parton showers. The parton splitting can be illustrated using Feynman diagrams, in
Fig. 3.2 three possible splits are shown. Color charged partons radiate gluons: g → gg

or q → qg, which can split into a quark-antiquark pair: q → qq̄, or radiate more
gluons.

Figure 3.2: Feynman diagrams showing quark and gluon splitting processes that occur in a parton
shower [23].

The showers essentially represent higher order corrections to the hard scatter process.
They are however unfeasible to calculate in a precise manner. Instead, the dominant
contributions associated with colinear parton splitting and soft gluon emission of each
order are included in an approximation scheme. Each order’s contributions are for-
mulated using probability distributions, leading to a sequence of possible events that
depend on the state attained in the previous event. Such a stochastic model is called
a Markov process and can simulated using the Monte Carlo method.

Parton showering can be divided into initial state showers, and final state showers
depending on when they take place. Initial state showers develop from the incoming

16 Chapter 3. Event simulation

partons in the hard scatter, or in other words from the constituents of the colliding
protons. Describing the initial shower evolution with PDFs in the forward direction is
not really desirable because sampling PDFs have high uncertainty in the low momentum
region where the initial state particles would be. So instead the showers are evolved
backwards starting from the hard scatter and going backwards in time. Final state
showers are the ones emerging from outgoing partons of the hard scatter. For them the
initial state momentum is the highest in the beginning of the shower, and thus they
are evolved forward in time down until reaching the infrared scale ≈ 1 GeV, where
hadronization takes place and ends the shower.

3.3 Hadronization

When partons emerging from parton showers have low enough energy they combine
into hadrons, a direct consequence of color confinement and asymptotic freedom. Per-
turbative QCD breaks down, requiring a non perturbative model. Such hadronization
models treat the partons as a color-connected system. Two prominent models in use
are the string model used by PYTHIA , and the cluster model found in HERWIG .

(a) String model (b) Cluster model

Figure 3.3: Illustrations of the string hadronization model on the right, and the cluster hadronization
model to the left. In the string model hadrons form a string configuration because of the strong force
potential rising linearly between color charged particles. In the cluster model on the other hand
quark-antiquark pairs at the end of the parton shower make up clusters from which hadrons are
created [22].

The string model, as seen in Fig. 3.3a, is based on the observation that the potential
energy of color charged particles rises linearly with their separation. A “color string”
so to speak is stretched between them. The reason for this is assumed to be the

3.4. Underlying event 17

self-attraction of the gluonic field, causing it to collapse into a string configuration
with thickness O(1 fm), when the distance between the color charged particles become
significantly larger than that.

The cluster model, meanwhile, is based on the concept of preconfinement. All gluons
are in this model separated into quark-antiquark pairs at the end of the parton shower.
After that clusters are formed from colorless combinations of the resulting partons,
shown as gray blobs in Fig. 3.3b. Finally, stable hadrons are created from these
clusters.

3.4 Underlying event

There are more hadrons produced than what can be ascribed to the showers produced
by the hard scatter. The extra activity observed is known as the underlying event,
and is believed to arise from those constituents of the incoming protons that are not
involved in the hard interaction.

The interactions in the underlying event are soft in the sense that they produce low-
pT particles. The interactions consist mostly of diffractive scattering and multiparticle
production processes. Because they are soft, perturbative QCD is again not applicable.
Instead multiple-parton interaction models and diffraction models with parameters that
can be tuned to experimental results are used by simulations.

3.5 Detector simulation

For the simulated event to match what is observed in reality, the detector itself needs to
be included in the simulation chain. Without detector simulation, the simulated event
represent purely theoretical particle interactions, which is the kind of particle-level
information physicists often times want. However, that information is only attainable
from measured data by knowing how the detector responds from simulations.

The GEANT4 engine used by the CMS experiment can accurately simulate how par-
ticles traverse through different materials. A detailed description of all the different
components and materials in the CMS detector is provided to the detector simulation
software allowing the software to trace particles through the detector step by step using
the Monte Carlo method.

Furthermore, GEANT4 is able to model various physical interactions with the detector
material. Examples of what GEANT4 is able to simulate are the effect of electric and
magnetic fields, bremsstrahlung, ionization, and interactions between hadrons and nu-

18 Chapter 3. Event simulation

clei on a wide energy spectrum ranging from MeV-scale elastic scattering of neutrons to
TeV-scale hadron showers. The complexity of these effects and the detector setup itself
makes detector simulation the most resource intensive steps in the event simulation
chain.

4. Event reconstruction

Events measured in the CMS detector are reconstructed with the help of simulated
values in an attempt to bring the measurements back to particle-level. Each particle
should be individually reconstructed. To achieve this, tracks and energy clusters that
lie between the tracker and calorimeter are matched in the Particle Flow algorithm.
From the reconstructed data it is possible to group particles together into physics
objects known as jets using various jet clustering algorithms. Due to multiple factors
such as the detector’s nonlinear energy response or its finite energy resolution, the
energy of the jets differ from particle-level jet energies. To resolve this issue the jets
are calibrated to match simulations in a series of steps laid out at the end of this
chapter.

4.1 Particle Flow algorithm

After event and detector simulation, events at CMS are reconstructed using the Particle
Flow (PF) algorithm [24]. The aim is to map the data measured in the detector back to
particle-level. The PF algorithm combines information from all subdetectors to create
a global event description containing a complete list of particles (charged hadrons,
neutral hadrons, muons, electrons and photons), and their properties (trajectories,
momenta and charges). Individual particles are known as PF candidates, which can
be used to construct higher-level physics objects. Fig. 4.1 illustrates the workflow of
the Particle Flow algorithm.

Tracks are reconstructed using a combinatorial track finder. It begins with identifying
a track seed, which consists of a few hits that are compatible with some trajectory.
Pattern recognition is then used to identify all remaining hits along said trajectory.
Lastly, the full track is determined by performing a fit to all hits. The process is
repeated multiple times to find the most optimal track.

Electromagnetic showers in the ECAL and hadron showers in the HCAL are wider than
one single ECAL crystal or HCAL module respectively. To determine the energies of the

19

20 Chapter 4. Event reconstruction

Figure 4.1: Schema for the Particle Flow algorithm. Information from all detector components is
used to map the detector signals back to particle-level [25].

particles that initiated the showers the energy deposits in the calorimeter the energy
deposits must be clustered. The clustering process begins by selecting calorimeter
cells where the energy deposit exceeds some threshold. Neighboring cells are added
to the clusters as long as their energy is at least twice as large as a predefined noise
level. Lastly, a maximum likelihood fit based on a Gaussian mixture model is used
to construct normally distributed clusters of energy deposits that corresponds to the
electromagnetic and hadronic showers.

A linking algorithm is used to connect signals which appear to be correlated. The PF
algorithm reconstructs particles in the order of the confidence of the linked signals.
Once a signal from an identified particle is reconstructed the process is repeated until
no more linked signals pass some quality criteria.

Muons propagate through the detector with minimal interaction until detected in the
outer rim where the muon chambers are located. This leads to the muons leaving the
clearest signals, so they are reconstructed first using information from the tracker and
the muon chambers. Electrons are reconstructed from signals in the tracker and ECAL,
whereas photons are identified by energy clusters in the ECAL that don’t connect to
a track. Charged hadrons are reconstructed from tracker, ECAL and HCAL signals.
Neutral hadrons on the other hand are a bit trickier to reconstruct since they only leave
a substantial energy deposit in the HCAL, and a small signal in the ECAL. However,
this has the positive effect that neutral hadrons can be reconstructed separately from
charged hadrons even when both of them make energy deposits in the same cell, because
the neutral hadrons deposit more energy than expected in the HCAL when compared
to the corresponding energy deposit in ECAL.

4.2. Jet clustering 21

4.2 Jet clustering

Using a jet clustering algorithm physics objects known as jets can be created from the
hadrons that are observed in the particle detector. The aim of such an algorithm is to
cluster a collection of particles observed as a collimated spray in the detector such that
they correspond to a parton initiating the particle spray. A jet clustering algorithm
has to fulfill two important criteria: 1. it needs to be infrared safe, meaning that it
is insensitive to soft infrared QCD radiation, and 2. the algorithm should be colinear
safe, i.e. even if there are collinear splitting of partons, jets are largely clustered the
same way.

There are several ways of clustering. However, so called sequential algorithms have
proved to work well. They start from a list of particle-level hadrons, and iteratively
compare elements of that list, combining them based on some criteria until no more
particles can fulfill it. The most commonly used algorithm selects an input particle i
at random, and successively compare that particle to other particles, denoted j using
distance separation dij:

dij = min(k2p
t,i , k

2p
t,j)

∆2
ij

R2 (4.1)

where ∆2
ij = (yi − yj)2 + (φi − φj)2. The variables kt, y and φ represent transverse

momentum, rapidity and azimuthal angle respectively. R is a radius parameter that
controls the width of the clustered jet in the (η, φ)-plane. If the merging criteria
dij < k2p

t,i is met, particle j is added to the jet, and a new j that minimizes dij is chosen
for further comparison. The jet is considered complete when no new particle j fulfills
the merging criteria.

Figure 4.2: Catchments are of jets in a simulated event clustered by the kt, Cambridge/Aachen and
the anti-kt algorithms [26].

The parameters p controls the relative importance of energy, and algorithms are labeled
depending on how it is chosen. The kt algorithm has p = 1, which result in a clustering
form the softest inputs to the hardest. If p = 0 one gets the Cambridge/Aachen
algorithm that has no preference for soft or hard jets in the clustering order. Lastly,

22 Chapter 4. Event reconstruction

the anti-kt algorithm has p = −1, and clusters the hardest inputs first. Interestingly
anti-kt is the most used algorithm of the three, partly because it is both infrared and
colinear safe, but also because the jets produced are nicely shaped cones, whereas the
other two algorithm produce more irregularly shaped jets, as Fig. 4.2 shows.

In this study jets have been clustered from the PF-candidates using the anti-kt algo-
rithm. During Run 2 of LHC the distance parameter R was set to 0.4 for light quark
jets. Fig. 4.3 summarize how a jet is created from proton-proton collision. A shower
of partons is produced by the collision, and color confinement cause the partons to
hadronize. The resulting collimated spray of color neutral particles is captured by
the detector’s calorimeter. The measurements are reconstructed and clustered into a
physics object known as a jet.

Figure 4.3: Sketch of a proton-proton collision and the resulting collimated spray of particles clus-
tered into a jet [27].

4.3 Jet calibration

The transverse momentum, pT, of the jets that have been clustered from reconstructed
PF candidates is different from the true particle-level pT. The reason for this is that
the physical detector has a finite energy resolution, and in addition, the mean value
for pT will differ due to threshold effects, non-linear detector response, and energy lost
to invisible particles such as neutrinos. The aim of jet energy corrections (JEC) is
to correct the energy, or more specifically the transverse momentum of reconstructed
jets, to be as close to particle-level as possible so that the influence of the detector is
ignored. JEC consists of multiple steps shown in Fig. 4.4 that each correct for some
inaccuracy found in the detector.

4.3.1 Pileup mitigation

The first step of calibrating jets is to mitigate the effect of pileup, both on data and
simulated events. Pileup stems from that many unwanted extra soft collision occur
in the detector hiding the rare hard interactions. To get more statistics out of the

4.3. Jet calibration 23

Figure 4.4: The jet energy calibration workflow. Pileup offset corrections are applied to both data
and simulated events, likewise with the simulated response corrections that follow. The residual
corrections (based on γ + jet, Z + jet and dijet events) are applied only to data. Lastly, the jet
flavors are corrected, resulting in calibrated jets [1].

collisions, the luminosity is increased, which means that there are more particles per
bunch, decreased bunch spacing and smaller beam size at the collision point. However,
increasing the luminosity (as will be done for the upcoming Run 3 of the LHC) leads
to even more pileup. The CMS detector can identify the interaction vertex of charged
particles, and can as such reject charged particles from pileup vertices. This technique
is referred to as charged hadron subtraction (CHS). It identifies about 60% of the energy
originating from pileup. To deal with the energy contribution of neutral particles the
average energy density of the pileup, ρ, is assumed to be uniformly distributed inside
the detector. Then you can perform a simple subtraction to get the pileup corrected
transverse momentum pcorrT :

pcorrT = prawT − ρ · A (4.2)

where prawT is the raw pT and A is the jet’s catchment area. The assumption of uniform
distribution of neutral particles is only valid when averaging over multiple collisions,
leading to suboptimal reconstruction of single collisions. A newer approach called
pileup per particle identification tries to address this by assigning weights to all particles
individually in a reconstructed event based on their likelihood to be pileup particles.
However, the jets in this study used the pileup mitigation strategy outlined above.

4.3.2 Response corrections

The second energy correction targets the response difference caused by the detector
itself. Response is defined as 〈precoT 〉/〈pgenT 〉 where 〈precoT 〉 is the average transverse mo-
mentum of the reconstructed jet, and 〈pgenT 〉 is the mean of the generator-level jet (both
in the same pgenT bin). Reconstructed jets are matched to generated jets by requiring
the difference in their radius parameter R to be less than 0.2. The correction factor is
applied in multiple pT and η bins since the detector is not isotropic and its capability
to measure differs depending on a jet’s energy. Simulations of the CMS detector, as
described in Sec. 3.5, are used to attain an accurate descriptions of the jet response in
the detector.

24 Chapter 4. Event reconstruction

4.3.3 Residual corrections

The difference in jet response that remain after correcting for pileup and simulated
response, is dealt with in a series of residual corrections. The law of conservation of
momentum is used to estimate the pT of a jet knowing the pT of a recoiling Z boson,
photon or another jet with high precision. Residual corrections can be divided into
relative and absolute corrections.

Relative residual corrections are determined by extrapolating the precise energy mea-
surements in the barrel region (|η| < 1.3) to the less precise endcap region (1.3 < |η| <
3.0) of the detector. Dijet events containing two jets with similar pT, one in the barrel
region (tag jet), and one jet in the endcap region (probe jet), are used to accomplish
this. A visualization of a dijet event can be seen in Fig. 4.5

Figure 4.5: An illustration of dijet topology [28].

Absolute residual corrections adjust the jet momenta in the range 30-700 GeV using
Z → e+e−+jet, Z → µ+µ−+jet and γ+jet events. Such events contain a Z boson or
a photon with precisely measured pT that can be used to estimate the miscalibration
and derive a correction for the recoiling jet.

4.3.4 Flavor corrections

Jets are characterized based on the flavor of the quark that initiated the jet in question.
Jets receive their flavor by jet tagging procedures. Heavy flavored jets are matched to
the hardest nearby b or c hadron. Jets with at least one b hadron are labeled as b jets,
whereas jets with at least one c hadron and no b hadrons are classified as c jets. Light
flavored jets are matched to the hardest nearby u, d, s quark or gluon. Jets that end
up without a matching parton are labeled as jets with unknown flavor.

4.3. Jet calibration 25

The amount of fragmentation caused by different partons vary. Quark jets, especially
those originating from u and d quarks, tend to have the highest response. Owing
to their higher color charge, gluons fragments more into softer particles with lower
calorimeter response. As a result of heavy hadron decaying into softer particles as
well, heavy flavored jets from b and c quarks have a detector response somewhere in
between quark and gluon jets.

At CMS the difference in response for different flavors is reduced substantially by re-
placing the non-linear calorimeter measurement of charged hadron energy with the cor-
responding track momentum. Despite this, approximately 15% of jet energy that is car-
ried by neutral hadrons is still subject to the calorimeter response non-linearity.

5. Geometric deep learning

Geometry was almost exclusively devoted to Euclidian geometry [29] until the 19th
century. At that time mathematicians such as Lobachevsky, Gauss, and Riemann
introduced their own versions of new non-Euclidian geometries. At the end of the
century the different geometries had become separate fields. Mathematicians together
with philosophers were debating the validity of them as well as the possibility of one
true geometry to rule them all.

In 1872 F. Klein proposed a solution to the diverging state of geometry in the form of
the Erlangen Programme [30]. The idea is to approach geometry from the perspective
of invariants, which are properties unchanged under some class of transformations,
also called the symmetries of a geometry. Using group theory Klein managed to unify
geometry by organizing geometries in a hierarchy of symmetry groups.

The Erlangen Programme had a profound impact on geometry, and the ideas of sym-
metry also spread, especially to physics where Noether’s theorem is a prime example.
The theorem states that there are quantities conserved in time (invariants) for every
system with a differentiable symmetry property. With given invariants researchers can
consider whole classes of hypothetical Lagrangians to describe a physical system. The
theorem was absolutely crucial when Yang and Mills in 1954 laid the foundations for
the standard model with its underlying symmetry groups.

The current state of deep learning is in a similar place to that of geometry in the 19th
century. New model architectures are springing up at a rapid pace which make the field
seem very chaotic. Bronstein et. al took inspiration from history, and try to address
this issue using symmetry and invariance [31]. By doing so one can classify neural
networks into different categories and make them fit into a hierarchical format.

5.1 Learning in high dimensions

Supervised machine learning (ML) refers to learning algorithms that, given a training
set of example inputs learn to associate them with a given set of outputs. The training

27

28 Chapter 5. Geometric deep learning

set is commonly referred to as a feature matrix, and can contain a mix of continuous
or discrete values. The outputs can also have continuous values, then the prediction
task of the ML algorithm is referred to as regression. On the other hand, if the outputs
are discrete labels, the task is instead classification. The name supervised ML stems
from that the outputs are provided by a human “supervisor”. However, they can be
collected automatically as well.

The training data consists of observations {(x1, y1), . . . , (xN , yN)} drawn from a dis-
tribution defined over X × Y , where X = Rd is typically a high dimensional input
space and Y is the output space. The labels y are generated by some function f(x)
which a supervised machine learning algorithm tries to estimate using a parametrized
function class F = {fθ∈Θ}. Neural networks are an example of this, where the param-
eters θ ∈ Θ represent the connection weights and potential biases. When fed with an
input x, the estimated f̂ ∈ F provides some output ŷ which ideally matches y. The
performance of the learned parametrization is evaluated using a loss function L(y, ŷ),
for which popular choices are mean squared error or mean absolute error for regression
and binary or categorical cross-entropy for classification.

A neural network is made up of neurons organized in layers. A network with multiple
layers is considered a deep neural network (DNN) or a multilayer perceptron (MLP).
Mathematically, the operation of one network layer can be written as:

f̂(x; θ) = σ(Wx + b) (5.1)

where W is matrix containing all the weight vectors of the individual neurons, and b is
a vector with bias terms for every neuron. The weights and the bias are the learnable
parameters of the neural network, that can be collectively written as θ. Some sort of
nonlinearity is also needed in order for the neural network to be able to learn something
more than a linear mapping of its input. Hence, various activation functions are used,
such as logistic sigmoid or hyperbolic tangent [32].

Optimization algorithms are used in order to minimize the loss function, and learn
the best possible solution to the problem. The most straightforward one is called
gradient descent. It works by taking the gradient of the loss function with respect to
the parameters and use that to update the parameters:

θ ← θ − η∇θL(y, f̂(X; θ)). (5.2)

The factor η is a constant known as learning rate. It is a hyperparameter that adjusts
how large steps the model should take in the direction of the gradient at each training
step. A learning rate which is too high can result in that a minima won’t be found, and

5.1. Learning in high dimensions 29

a too small learning rate can cause the training to take a very long time to converge,
and potentially get stuck in an undesirable local minimum.

A naive direct computation of the gradient is unfeasible since the number of required
operations will scale exponentially with respect to the number of edges in the compu-
tational graph. However, by using the chain rule and computing the gradient one layer
at a time, as well as iterating backwards from the last layer, one can avoid redundant
calculations of intermediate terms in the chain rule. In that case the number of opera-
tions scale linearly with number of edges in the computational graph. This algorithm,
also known as backpropagation, was first described in S. Linnainmaa Master’s thesis
[33], but without the intention of using it for training neural networks.

Multilayer perceptrons (MLP) are, as shown in Fig. 5.1, universal approximators.
This is very useful since modern day computational capacity allow for the design of
rich function classes F with the capacity to perform approximations on large datasets.
However, even if MLPs can approximate target functions arbitrarily well, some form of
inductive bias or effective priors that capture the regularities in the learning task are
still required for the model to be able to generalize well.

Figure 5.1: A multilayer perceptron with only one hidden layer can represent any combinations of
step functions, and can thus approximate a continuous function to an arbitrary precision [31].

For data in low dimensions machine learning algorithms can easily generalize correctly.
However, when moving to higher dimensions, learning becomes exceedingly difficult.
This phenomenon, as seen in Fig. 5.2, is referred to as the curse of dimensionality.
The number of possible ways to configure the data is much larger than the number
of training examples in a high dimension setting. In order to perform approximations
on such a sparse dataset the number data-points needed for analysis grows exponen-
tially. An immediate response to the problem would be to project the samples to lower

30 Chapter 5. Geometric deep learning

dimension and perform the learning on that instead. Unfortunately, it is very likely
that a substantial amount of fidelity of the inputs is lost by doing such an operation,
leading to the need for an alternative source of regularity.

Figure 5.2: Fitting a function in high dimensions is a cursed estimation problem. In order to
approximate even a simple class of Lipschitz continuous functions shown here as superposition of
Gaussian blobs put in the quadrants of a unit cube, the number of samples grows exponentially with
the dimension [31].

5.2 Geometric priors

To overcome the problem of learning in high dimensions, the geometric structure of the
domain underlying the input signals, can be used to our advantage. In the geometric
deep learning article the principles of symmetry and scale separation are utilized to
combat the curse of dimensionality. Collectively they can be referred to as geometric
priors for deep learning. A symmetry is a transformation that leaves some system
unchanged, whereas scale separation refers to the preservation of important character-
istics in the signal when transferring it onto a coarser version of the domain.

The first geometric prior, symmetry, can be explained using an example from computer
vision. A classic example is the attempt to classify digits in images as can be seen in
Fig. 5.3. The domain in this example is a grid which imposes structure on the class
of functions f that the model aims to learn. Functions unaffected by the action of
the group G are called invariant functions. In image classification a good example of
this is shift invariance. No matter where in the image the number three is located
the model should still be able to correctly classify it as number three. In some cases
the function can have the same input and output structure, for example in image
segmentation, where the output is a pixel-wise label mask. In that case the output
should be transformed in the same way as the input, which is called an equivariant
transformation. In the case of image segmentation this concept would manifest as shift
equivariance.

5.2. Geometric priors 31

Figure 5.3: The use of geometry in an image classification task. A signal (red square) X (Ω) is
defined on some domain Ω (gray square), which in this case is a 2-dimensional grid. The structure of
the domain Ω is captured by a symmetry group G, here seen as translations in 2-d space, which acts
on the points of the domain x ∈ X (Ω). In the space of signals the group actions on the underlying
domain are manifested through what is called the group representation ρ(G), which here would be
the shift operator [31].

In some cases it is possible to construct a multiscale hierarchy of domains by as-
similating nearby points. From those domains a hierarchy of signal spaces can be
formed that are related to the original signal spaces by a coarse graining operator
P : X (Ω)→ X (Ω′), as illustrated in Fig. 5.4. Coarse-scale functions f ′ can be applied
on the signals on the coarse domain. The function f is said to be locally stable if it
can be approximated as the composition of the coarse graining operator P and the
coarse scale function f ′, i.e. f ≈ f ′ ◦ P . While the original function f might depend
on long-range interactions on the domain, in locally stable functions it is possible to
separate the interactions across scales, by first focusing localized interactions, and then
propagate them towards the coarse scales.

Figure 5.4: Scale separation in an image classification task. The signal X (Ω) illustrated as a red
three is mapped by P to a signal on a coarse grid Ω′ making the coarse signal X (Ω′) less sharp. The
classifier f ′ acts on the coarse grid signal which should be approximately the same as f operating on
the original signal [31].

32 Chapter 5. Geometric deep learning

5.3 Geometric blueprint for deep learning

The two principles of symmetry and scale separation yields a general blueprint of
geometric deep learning that can be recognized in popular deep neural network archi-
tectures today. An example from computer vision was used to explain the geometric
priors, however other prime examples are the rotational invariance (symmetry) used
when training on molecular graphs in chemistry, or local pooling (scale separation)
when training graph neural networks in general. Using the geometric priors it is possi-
ble to derive three key building blocks (Fig. 5.5), that are inherently connected to the
geometry of the input domain, and the underlying symmetry group.

Figure 5.5: A sequence of layers in neural network following the principles of geometric deep learning.
Permutation equivariant layers are key to learning on individual nodes. There is a local pooling layer
between them that coarses the graph. Lastly, the network has a permutation-invariant global pooling
layer as readout layer that maps to the target [31].

First, there is the linear G-equivariant layer that computes node-wise features:

B : X (Ω)→ X (Ω′), satisfying B(g.x) = g.B(x) for all g ∈ G and x ∈ X (Ω) (5.3)

The second building block is the coarsening operator, also known as local pooling, that
can help with learning performance by creating a hierarchy of domains:

P : X (Ω)→ X (Ω′), such that Ω′ ⊆ Ω (5.4)

Lastly, the G-invariant layer, or global pooling:

A : X (Ω)→ Y , satisfying A(g.x) = A(x) for all g ∈ G and x ∈ X (Ω) (5.5)

may be used to aggregate the output to a global setting if the goal is to make predictions
over the domain as a whole. In addition to these three blocks, nonlinearities σ(x) are
needed to compute nontrivial problems. They come in the form of activation functions

5.4. Learning on sets and graphs 33

in deep learning. With all of these tools at our disposal it is finally possible to construct
the desired G-invariant functions f : X (Ω)→ Y of the form:

f = A ◦ σN ◦BN ◦ PN−1 ◦ . . . ◦ P1 ◦ σ1 ◦B1 (5.6)

where the blocks are chained in such a way that the output space of one block matches
the input space of the next one. Different blocks may have different activation functions,
and may also exploit different symmetry groups.

The blueprint for learning presented here is at the right level in terms of generality
to be applied in a wide range of domains used in current deep learning, which are
mainly the “5Gs”: grids, groups, graphs, geodesics and gauges. In table 5.1 various
neural network architectures are presented with their respective domain and symmetry
group. The domains of interest in this thesis are sets and graphs, so a focus is put on
solely those in the next section.

Architecture Domain Ω Symmetry group G

CNN Grid Translation
Spherical CNN Sphere Rotation
Intrinsic / Mesh CNN Manifold Isometry / Gauge symmetry
GNN Graph Permutation
Deep Sets Set Permutation
Transformer Complete graph Permutation
LSTM 1D Grid Time warping

Table 5.1: Different deep learning architectures are used on data with different underlying domains.
In addition, they use symmetry groups tailored to the domain such that the transformations are
invariant [31].

5.4 Learning on sets and graphs

Graphs can often be use to represent different types of data. This thesis deals with
particle collision data that naturally comes in the form of unordered sets, and by using
detector coordinates for example, one can also form a graph of the data. Learning on
graphs is a particular setting of the geometric blueprint for learning with the domain
Ω as a graph G. The symmetry is given by the permutation group G = ∑

n with all the
possible orderings of the set of node indices {1, ..., n} as elements. It will be shown in
this section that learning on a set actually can be seen as a particular case of learning
on graphs.

34 Chapter 5. Geometric deep learning

A directed graph representing a point cloud structure with nodes V = {1, . . . , n} and
E ⊆ V × V can be written as G = (V , E). Sets can be seen as a special case of a graph
where the domain is only the set of nodes V , and the edges are just the empty set E = ∅.
The features of a node i that are used for learning on can be written as xi ∈ Rk. They
can be stacked together into a n × k node feature matrix X = (x1, . . . ,xn)T , so that
each row of X corresponds to a feature vector xi.

It is desirable that the result of a function f acting on the data is independent of the
node ordering. More formally, f(X) is permutation invariant if, for all n × n shaped
permutation matrices P it holds that f(PX) = f(X). A permutation matrix is a
square binary matrix that has exactly one entry valued 1 in each row and column, and
zeros elsewhere.

For all cases where predictions are needed on node-level instead of set-level, f(X) must
be permutation equivariant to be able to make predictions. That is the case when
F(PX) = PF(X) holds for all permutation matrices P. The bold notation for F(X)
emphasizes that it outputs node-wise vector features, and is thus a matrix-valued
function. An equivariant set function can be thought of as transforming each node
input xi into a latent vector hi = φ(xi):

F(X) =


φ(x1)
φ(x2)

...
φ(xn)

 (5.7)

where φ is a function applied in isolation to every node. Stacking the node-wise trans-
formations together as in Eq. (5.7) produces a latent space matrix with all transformed
features. In practice, φ consists of one or many dense layer(s) with shared weights,
meaning that when a neural network is trained, the same layers are applied to every
node.

Following the geometric blueprint presented in Section 5.3, a general formula for learn-
ing on sets can be written as:

f(X) = ρ

(⊕
i∈V

φ(xi)
)
. (5.8)

The outputs of φ are aggregated by ⊕ denoting some permutation invariant pooling
operator (such as sum, average or max) if predictions on set-level are desired. After
aggregating the output an additional tail function ρ (e.g. an MLP) is applied that
maps to the learnable target.

The blueprint for learning on graphs can be derived in similar fashion. Instead of a set
of nodes the full graph G is considered. The edges can be represented with an n × n

5.4. Learning on sets and graphs 35

adjacency matrix A, such that:

aij =

1 (i, j) ∈ E

0 otherwise.
(5.9)

The notion of permutation invariance and equivariance can be generalized to graphs.
Both the rows and the columns of A need to be appropriately permuted when applying
permutation matrix P, which amounts to PAPT . Updated definitions of suitable func-
tions f(X,A) over graphs can be written as f(PX,PAPT) = f(X,A) for invariance
and F(PX,PAPT) = PF(X,A) for equivariance.

On sets, locality was enforced by applying functions to every node in isolation. For sets
it is enough to specify the features and assume the domain to be fixed. Graphs on the
other hand have a broader context, and invariance to domain deformation (geometric
stability) needs to be taken into account. A node’s immediate neighborhood can be
used to enforce locality in graphs. For a node i, its closest neighbors are:

Ni = {j : (i, j) ∈ E ∨ (j, i) ∈ E}. (5.10)

Using the notion of neighborhood the set of features in the neighborhood can be ex-
tracted as:

XNi
= {xj : j ∈ Ni}. (5.11)

To construct permutation equivariant functions on graphs, a local function φ(xi,XNi
)

that operates over the set of features must be defined. The function φ takes the
features of node i as well as the entire set of features in the neighborhood and updates
the features of node i based on this locality. The graph update operation is illustrated
in Fig. 5.6.

Figure 5.6: A permutation-equivariant function operating on a graph by applying a permutation-
invariant function φ to every neighborhood. In the picture φ is applied to the features xb of node b
and the set of its neighboring features XNi = {xa,xb,xc,xd,xe}. Applying the function φ to every
node’s neighborhood results in a matrix of latent features H = F(X,A) [31].

36 Chapter 5. Geometric deep learning

With this information at hand a permutation equivariant function F can be constructed
as follows:

F(X,A) =


φ(x1,XN1)
φ(x2,XN2)

...
φ(xn,XNn)

.

 (5.12)

Importantly, the output of φ must be independent of the ordering of the nodes in the
neighborhood Ni for F to be permutation equivariant. The overall computation of F
is in practice referred to as a layer in a GNN.

When learning on graphs the latent features hi of a node i can be constructed by apply-
ing some learnable function ψ(xi,xj) on the neighboring features and aggregating the
result over the neighborhood Ni using a permutation invariant operation ⊕. Another
learnable function φ is then further applied that updates the features of node i to a
latent feature vector hi:

hi = φ

xi,
⊕
j∈Ni

ψ(xi,xj)
 . (5.13)

GNNs can be classified into different flavors depending on how edge interactions
ψ(xi,xj) are computed as depicted in Fig. 5.7. A simple and well studied flavor
is convolutional GNNs with ψ(xi,xj) = cijψ(xj). Here cij is a constant specifying the
importance of node i to node j’s representation, often directly dependant on the entries
in the adjacency matrix A that represents the graph structure. Another type of GNN is
the attentional flavor with ψ(xi,xj) = a(xi,xj)ψ(xj) where a is a learnable importance
coefficient. The attentional flavor allows for modeling more complex interactions within
neighborhoods by computing scalar-valued quantities across the edges. However, most
information can be extracted by the message-passing GNN flavour where vector-valued

Figure 5.7: Current graph neural networks can be divided into three flavors: 1. convolutional for
which sender node features are multiplied with a constant cij , 2. attentional where the factor is
implicitly computed using an attention mechanism of the receiver over the sender aij = a(xi,xj) and
3. message-passing where messages in vector form are calculated based on both the sender and the
receiver mij = ψ(xi,xj) [31].

5.4. Learning on sets and graphs 37

messages are computed across edges, which translates to using ψ(xi,xj) as is. Because
the choice of ψ increase in generality one can note that the flavors can be represented
by each other, such that convolutional ⊆ attentional ⊆ message-passing.

Latent features can be used in an equivariant setting directly to make predictions on
node level as seen in Fig. 5.8. In that case a learnable function ρ is applied immediately
on the node features hi. A second option is to do predictions on links in the graph.
Then, information about a node i, its neighbor j and edge features eij that might exist
between them, is used by ρ. Finally, graph-level predictions can be made by performing
a permutation invariant aggregation over all node features and applying a permutation
invariant tail function. This can be written as:

f(X,A) = ρ

(⊕
i∈V

φ(xi,XNi
)
)

(5.14)

where ⊕i∈V is the global pooling operation. The additional input xi to φ represents
an optional skip-connection, which is often very useful. Eq. (5.14) is a manifestation
of the geometric deep learning blueprint since all the necessary elements are present:
node-wise G-equivariant layers φ with local pooling, and a G-invariant readout layer
at the end.

Figure 5.8: Having run a GNN on a graph-based dataset provides you with a learned latent feature
matrix H that can utilized in different ways depending on the application. It is possible to do
predictions on node level directly on the latent features hi, or you can aggregate the latent features
into global graph level outputs,

⊕
i∈V hi, and do predictions on them. A final option is to use node

and link information, hi,hj , eij , for link level predictions [34].

6. Jet energy regression

Machine learning is widely used within the high energy physics community for analyzing
the data that comes out of the collisions. However, because the resulting particles
branch off in different ways the resulting data is in the form of variable-length lists
with no intrinsic ordering. Traditional machine learning models are not well suited
for dealing with such data, but there has been progress on that front with learning
on point clouds in computer vision. In the case of particle physics the underlying
data comprised of unordered sets can be seen as particle clouds in the (η, φ)-plane
analogous to the point clouds used to represent a 3D image in the (x, y, z)-plane for
example. Neural networks for classifying, or tagging, jets have been trained successfully
on particle clouds. The problem in this thesis is not so far off from jet tagging. The aim
is to predict particle-level jets’ transverse momentum, which is a continuous variable,
using reconstructed data. This means that instead of performing classification, it is a
regression task. However, the same type of data and model architectures used for jet
tagging are applicable to this problem.

6.1 Dataset

The simulated event samples used in this study were produced using the PYTHIA 8
event generator with the CUETP8M1 parameter tune. The QCD dijet events were
simulated at a center of mass energy of 13 TeV and binned according to HT , which
is the sum of generator level hadron transverse energies. The detector simulation is
based on the state of CMS during the summer 2016 when Run II took place. Jets were
reconstructed from PF candidates and clustered using the anti-kT algorithm [26] with
R = 0.4. The CHS method was used for pileup mitigation. The program that produced
the jet samples2 is a fork of previous ML JEC studies by A. Popov [35], and it has
been run within the CMS Software framework [36]. The dataset has 14 million jets in
total sharded into Mini-AOD [37] compressed ROOT [38] files with 100 thousand jets

2gitlab.cern.ch/dholmber/ml-jec-vars

39

https://gitlab.cern.ch/dholmber/ml-jec-vars

40 Chapter 6. Jet energy regression

each. The data is divided into a training set with 60% of the jets, and validation and
test sets with 20% of the jets each.

The data is downsampled in overpopulated regions (e.g. way too many low pT jets) of
the parameter (pgenT , ηgen, flavor) space. The dataset has fixed proportions of different
jet flavors such that the proportions of b, c, uds and g jets are 1 : 1 : 2 : 2 respectively.
In addition, the distribution of data has the same shape for all jet flavors. It is made
flat in (pT, η) at low pT and steeply falling at high pT by sampling from a probability
density function based on the hyperbolic cosine function:

hT (pT, η) ∝
[
cosh p

pref
· cosh η

]−1

(6.1)

where p = pT cosh η is the magnitude of jet momentum. The parameter pref is chosen
to be 500 GeV based on trials and the available statistics at high p [39]. The resulting
distribution of data is displayed in Fig. 6.1.

030 100 300 1000 3000
pgen

T

0

1

2

3

4

5

|
ge

n |

100

101

102

103

104

(a) Spectrum of jets in (pT, η) bins

u d s c b g unknown0

1

2

3

4

Nu
m

be
r o

f j
et

s

1e6

(b) Number of jets per flavor

Figure 6.1: Distribution of jets used in this study. The heatmap to the left shows the number of
jets as a function of pT and η, and to the right the number of jets of different flavors are displayed in
bar diagram.

The dataset includes jet-level data, PF candidates, and secondary vertices (SV). Jet-
level data consists of global features describing a jet. In practice, there are multiple
particles making up a jet. The PF candidate data describes the particles inside a
jet, and the SV data depicts the interaction points of daughter particles in a jet.
The PF candidates can further be divided into charged and neutral particles. The
division between charged and neutral constituents can be beneficial since they behave
differently in the detector. The sets of particles in the PF candidate collections are up
to 64 elements in size, whereas the SV collection consist of smaller sets with up to 16

6.1. Dataset 41

elements each. A jet with many constituents is shown using detector coordinates in
Fig. 6.2. The plot visualizes what is known as a particle cloud in the (η, φ)-plane.

1.2 1.3 1.4 1.5 1.6 1.7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1 Charged particles
Neutral particles
Secondary vertices

Figure 6.2: Constituents of a large jet with 64 charged particles, 27 neutral particles and 15 secondary
vertices shown as a particle cloud. The size of the markers is proportional to the constituent’s pT.

Global observables in the dataset are listed in Table 6.1, and jet constituent features
are listed in Table 6.2. The feature tables include all variables, even synthetically
created ones. All of them are used for training neural networks as presented in a later
section.

Variable Description

pT Transverse momentum of the jet
η Pseudorapidity of the jet
φ Azimuthal angle of the jet
ρ Median angular pT density
m Jet mass
A Jet catchment area
nPV Number of good primary vertices
pTD Jet fragmentation distribution
σ2 Jet minor angular opening
multiplicity Jet constituent multiplicity

Table 6.1: Jet-level input features.

42 Chapter 6. Jet energy regression

Variable Description Charged PF Neutral PF SV

pTi
Transverse momentum of a jet constituent x x x

ηi Pseudorapidity of a jet constituent x x x
φi Azimuthal angle of a jet constituent x x x
∆pTi

Fractional pT of a jet constituent x x x
∆ηi Fractional pseudorapidity of a jet constituent x x x
∆φi Fractional azimuthal angle of a jet constituent x x x
dxy Distance in the xy-plane from the primary vertex x
dsigxy dxy significance x
dz Distance in z from the primary vertex x
χ2
trk Normalized track χ2 x
nhits Number of hits x
npixel hits Number of pixel hits x
lost hits Lost inner hits x
hcal frac HCAL energy fraction x
dSV Flight distance x
dsigSV Flight distance significance x
ntracks Number of tracks x

id Particle id code x x x
PV quality Primary vertex association quality x

Table 6.2: Jet constituent input features.

In addition to the jet features that are readily available in the dataset as is, such
as jet pT, η, φ, mass, and so on, some feature engineering is applied producing new
synthetic features. To help with light quark/gluon discrimination three features (Fig.
6.3) are created: PF candidate multiplicity, jet transverse momentum distribution
variable pTD, and jet minor axis σ2.

0 10 20 30 40
Multiplicity

0.00

0.02

0.04

0.06

0.08

Fr
ac

tio
n

of
 je

ts
/b

in

80 < pgen
T < 100 GeV, 0 < | gen| < 1.3

quark
gluon

(a) Jet constituent multiplicity

0.2 0.4 0.6 0.8 1.0
pTD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
ac

tio
n

of
 je

ts
/b

in

80 < pgen
T < 100 GeV, 0 < | gen| < 1.3

quark
gluon

(b) Jet pT distribution variable

0.00 0.05 0.10 0.15 0.20
2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n

of
 je

ts
/b

in

80 < pgen
T < 100 GeV, 0 < | gen| < 1.3

quark
gluon

(c) Jet ellipse minor axis

Figure 6.3: Features used for discriminating quarks and gluons

The multiplicity is computed as the number of PF candidates with pT > 1 GeV in a
jet. Because gluons have a higher color charge than light quarks, they produce more

6.1. Dataset 43

and softer particles [40]. Gluons therefore have higher multiplicity than quarks which
makes it a good feature for discriminating between the two types of jets.

The transverse momentum distribution variable:

pTD =

√∑
i p

2
T,i∑

i pT,i
(6.2)

expresses the difference in pT distribution between quarks and gluon. For jets made
of one particle carrying all momentum pTD → 1, whereas pTD → 0 for jets with an
infinite amount of particles carrying the total momentum. Since gluons produce softer
jets in general, pTD will be lower for them on average.

It is well motivated to approximate a jet as an ellipse because of the conical shape of
clustered jets. A certain feature of the ellipse called the minor axis, σ2, can be used to
distinguish how collimated, or wide, a jet is in the (η, φ) plane. Gluon hadronization
is expected to produce wider jets than quark hadronization, so σ2 will in general be
larger for gluon jets.

Other useful features created from already existing ones are relative pT, η and φ. They
represent the proportion of a certain jet-level observable contained by a specific particle
in the PF candidates which can be useful information for an ML model. The relative
features are defined as follows:

∆pT = ppfT/p
jet
T (6.3)

∆η = sgn(ηjet)(ηpf − ηjet) (6.4)

∆φ = (φpf − φjet + π) mod 2π − π. (6.5)

There are some categorical features in the dataset, where each category is represented as
a unique integer. To emphasize the difference between categories, categorical features
are one-hot encoded, meaning that orthogonal vectors are created for every category.
For example, neutral particles have the following IDs: 1 = down quark (d), 2 = up
quark (u), 22 = photon (γ) and 130 = long-lived neutral kaon (K0

L) [41]. When
encoded, these particle IDs would map to the vectors shown in the table below.

d 1 0 0 0
u 0 1 0 0
γ 0 0 1 0
K0
L 0 0 0 1

Table 6.3: One-hot encoded neutral particle IDs.

44 Chapter 6. Jet energy regression

6.2 Target and loss function

The reconstructed jets’ transverse momentum are corrected towards particle-level using
basic kinematic quantities as laid out in Sec. 4.3. ML regression can improve those
corrections further. The target of the regression is to predict pgenT knowing precoT as
well as other reconstructed features. However, to avoid having a wide and skewed
target distribution, the correction factor pgenT /precoT is used as target instead of pgenT .
Furthermore, the logarithm is taken of the correction factor yielding the final training
target y as:

y = log
(
pgenT
precoT

)
(6.6)

which gives a nice centralized distribution as seen in Fig. 6.4. To then get the corrected
transverse momentum pcorrT the predicted correction factor exp(y) must be multiplied
by precoT . From there one can define the per-jet response as:

R = pcorrT
pgenT

. (6.7)

R should ideally hover around unity, and more importantly, have a good resolution.
Mean absolute error (MAE) is used as loss function. To avoid spikes in loss during

1.5 1.0 0.5 0.0 0.5 1.0 1.5
log(pgen

T /preco
T)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
ac

tio
n

of
 je

ts
/b

in

Figure 6.4: The logarithm of the transverse momentum correction factor will be used as regression
target in this study.

training, outliers with a target value smaller than -1 or larger than 1 are ignored by
the ML models. The loss function becomes:

L = 1
N

N∑
i=1
|yi − ŷi|I|yi|<1 (6.8)

where N is the total number of samples, y is the true target value, and ŷ is the predicted
target value.

6.3. Models 45

MAE showed better results than the more commonly used mean squared error (MSE)
loss during trial runs, which is why it was chosen. Here follows a brief explanation on
how these two losses compare, and a motivation for choosing MAE in this case. A loss
function can be seen as a functional rather than just a function. When a sufficiently
powerful network learns, it can be thought of as choosing a function ŷ = f̂(x) from a
wide class of functions. Different cost functions can give different statistics depending
on what function minimizes it. For example, the minimum of mean squared error
(MSE) lies on the function that maps x to the expected value of y given x. In the case
of MAE the function minimizing E|y− ŷ| is f̂(x) = Median(y | X = x) [32]. Predicting
the median can be seen as beneficial since it is a robust measure of central tendency,
meaning that regardless of whether the conditional distribution is asymmetric the fit
is unbiased. MAE gives a smaller importance to outliers compared to the MSE loss. If
the costs associated with errors increase linearly for the application, in this case errors
for pgenT predictions, then MAE is likely the sounder choice. A previous study of b-jet
energy regression [4] also concluded that a cost function with reduced sensitivity to the
tails of the target distribution is preferred.

6.3 Models

The models that will be used for performing jet energy regression must be able to
deal with the data structure of the PF candidates, which is variable length unordered
sets. A graph can further be constructed from the constituents by using η and φ as
coordinates, thus forming a particle cloud. Two novel architectures that can be trained
on such data are: 1. the set based Deep Sets architecture [6], and 2. the graph based
Dynamic Graph Convolutional Neural Network (DGCNN) [42] architecture. These
network types have been adopted by experimental particle physicists to improve the
accuracy of jet tagging, which is a classification task in machine learning terms. They
have proposed their own versions of the architectures, Particle Flow Network (PFN)
[43] and ParticleNet [7] respectively.

Improving the jet energy resolution is a regression task rather than a classification one,
however, the same type of data can be used for training in both of these tasks. In addi-
tion, both PFN and ParticleNet performed very well in classification, ParticleNet even
reaching state of the art. Both of those reasons make PFN and ParticleNet compelling
choices for jet energy regression. The comparison between the two architectures is also
an interesting one since they lie at the opposite end of the complexity spectrum of
architectures that can be trained on particle clouds. PFN is a purely set based model,
whereas ParticleNet calculates a graph using a costly k nearest neighbor (k-NN) oper-

46 Chapter 6. Jet energy regression

ation, and furthermore belongs to the class of message-passing GNNs with inherently
computationally expensive edge features.

6.3.1 Mutual architectural choices

Both PFN and ParticleNet use the same activation function, the rectified linear unit
(ReLU):

ReLU(x) = max(0, x) (6.9)

where x is the input to a neuron [44]. ReLu is a computationally very simple and
fast activation function. Additionally, network units are sparsely activated in the be-
ginning when weights are commonly initialized uniformly around zero. Sparsity can
help to disentangle factors explaining variations in the data [45]. The output layer in
an unbounded regression problem can be without an activation function since nonlin-
earities are only required in hidden layers in the network. The output is then said
to have linear activation, which is the case for the models in this study. This differs
from how both models are originally implemented. They are designed to deal with
classification problems and each have a softmax activation function as readout layer.
The networks are named PFN-r and ParticleNet-r to signify the difference from the
original models.

The He-normal initializer is used for weight initialization in both models since it is
derived for, and proven to work well with rectifier activations [46]. It draws samples
from a truncated normal distribution centered around zero with standard deviation
equal to

√
2/nl, where nl is the number of input units of a layer.

Batch normalization (BatchNorm) [47] can improve the training performance of deep
neural networks and is used for both models in this study. It works by normalizing
the values in a mini-batch B = {x1...m} using the mini-batch mean µB and standard
deviation σ2

B:

x̂i = xi − µB√
σ2
B + ε

(6.10)

yi = γx̂i + β. (6.11)

A small ε is added to the denominator for numerical stability. The normalized acti-
vation is represented by x̂i, which has zero mean and unity variance if ε is omitted.
The internal output x̂i is multiplied by a learned scale parameter γ and then summed
with a learned shift parameter β. Hence, it is unnecessary to add a bias term to linear
layers in the network since BatchNorm already has one built in. BatchNorm is nor-
mally applied directly after linear layers since those are more likely to have symmetric
non-sparse distributions, compared to after activations have been applied.

6.3. Models 47

For neural networks with many layers the gradients computed by backpropagation
using the chain rule can become increasingly smaller leading to slow weight updates
in early layers. BatchNorm can help with this via its normalization step that fixes
the means and variances of layer inputs. This allows the gradient to flow through
more easily since the gradient dependence on parameter scales is reduced. When
using BatchNorm a higher learning rate can be used, speeding up training without
the risk of vanishing or diverging gradients. Another phenomenon that affects deep
neural networks is internal covariate shift. As the parameters of a layer change, the
distribution of inputs to the next layer change accordingly, and so on. These shifts in
input distributions are amplified as they propagate within the network. BatchNorm is
proposed to reduce such unwanted shifts producing more reliable models and speeding
up training further. Lastly, because random values are included in a minibatch at each
step, hidden units in BatchNorm are multiplied by values that fluctuate a little. This
noise leads to BatchNorm having a slight regularization effect, making the models less
prone to overfitting.

Both models use the same iterative optimization algorithm for finding the minimum of
the loss function. The optimizer, named Adaptive Moment Estimation (Adam) [48], is
based on a stochastic approximation of gradient descent. This is because the gradient
is calculated on one subset, or batch, of the full dataset at a time. The gradient is
usually calculated in batches in deep learning applications because the training data is
usually too large to fit into a computer’s working memory all at once.

To improve upon vanilla stochastic gradient descent, the learning rate is adapted for
each parameter in the Adam algorithm. The first moment (mean) as well as the second
moment (uncentered variance) of the gradients are used to calculate the learning rate
for a weight. Empirical results have shown that Adam compares favorably to other
optimization methods, making it a very common optimizer choice.

6.3.2 Particle Flow Network

PFN is a Deep Sets network used for jet flavor tagging. As seen in Sec. 5.4, the model
for learning on sets is a simplified version of graph learning with an empty set of edges.
Deep Sets and consequently PFN adopts the blueprint for learning on sets directly as
is, with latent features as hi = φ(xi), where xi ∈ RF is a row with F separate feature
values. The output of ψ consists of a set with n latent particles. The complete network,
with a permutation invariant tail for making global predictions, can be described by:

f(X) = ρ

(∑
i∈V

φ(xi)
)
. (6.12)

48 Chapter 6. Jet energy regression

Summation was chosen as the global pooling operation in line with the PFN paper.
It is a perfectly valid choice since the output is independent of the ordering of the
inputs. The equation above describes the PFN network applied to only one set of
particles in some constituent collection, however PFN-r takes multiple collections as
inputs separately.

The full PFN-r architecture is illustrated in Fig. 6.5a, and the layers operating on
individual particles in set based collections is shown in Fig. 6.5b. The network passes
charged and neutral PF candidates as well as secondary vertices through blocks based
on Eq. (6.12). The inner mapping φ consists of three dense layers with BatchNorm
and ReLu as activation function. The Deep Sets blocks for PF candidates are trained
with more units (PFN-r: 64, 128, 256, PFN-r Lite: 16, 32, 64) compared to the lower
multiplicity SV collection (PFN-r: 32, 64, 128, PFN-r Lite: 8, 16, 32). Global sum
pooling is applied on the Deep Sets output. The tensors can then be concatenated
with jet-level features since they have the same number of rows at that point. Another
MLP block ρ is applied to them, again with linear, BatchNorm and ReLU layers. The
number of units are (1024, 512, 256, 128, 64) for PFN-r and (128, 64, 32, 16, 8) for
PFN-r Lite. Lastly, a linear output layer with 1 unit applied mapping to the regression
target.

Deep Sets Block

n = (64, 128, 256)

Fully Connected

512, BatchNorm, ReLu

Fully Connected

256, BatchNorm, ReLu

Fully Connected

128, BatchNorm, ReLu

Fully Connected

64, BatchNorm, ReLu

charged
constituents

global features

Fully Connected

1

Deep Sets Block

n = (64, 128, 256)

neutral
constituents

Deep Sets Block

n = (32, 64, 128)

secondary
vertices

Fully Connected

1024, BatchNorm, ReLu

Global Sum Pooling
 Global Sum Pooling
 Global Sum Pooling

(a) PFN-r

constituents

Linear

ReLu

Linear

ReLu

Linear

ReLu

applied
elementwise

BatchNorm

BatchNorm

BatchNorm

(b) Deep Sets block

Figure 6.5: The structure of the Particle Flow Network, as implemented in this thesis.

6.3. Models 49

6.3.3 ParticleNet

ParticleNet is a GNN that uses relative η and φ as initial coordinates for vertices in a
graph. An Euclidean distance matrix is created from pairwise distances between points
in the (∆η, ∆φ) - plane. The element of the distance matrix are given by the squares
of the distances between the points dij = ||pi − pj||2. In total there are n points per
set, and they belong to R2 since there are two coordinates. The k-NN algorithm is used
to construct edges in the graph as connections between each point and its k closest
points. Since there exists a local patch for every point, convolution operations can be
run on them.

Messages between every point and its neighbors are calculated using an asymmetric
edge function ψ(xi,xj − xi), so that information about both global shape structure
and the local k-hop neighborhood is included. The edge function ψ is implemented as
an MLP consisting of three linear layers each with BatchNorm and ReLU activation
applied to the edge features. In practice, the MLP is implemented via graph convo-
lution with number of channels corresponding to the number of units in each linear
transformation layer, or in other words, the output dimensionality of the feature vector
at every node. Because of the convolutions, the learnable parameters in φ are shared
for all nodes in the graph. A channel-wise symmetric operation chosen to be the mean,
aggregates the edge features for every vertex. This concludes the EdgeConv operation
[42] given as the second input to φ:

hi = φ

xi,
1
k

∑
i∈N k

i

ψ(xi,xj − xi)

 . (6.13)

A skip connection runs in parallel with the EdgeConv operation. The skip connection
is a learnable linear mapping that works as a shortcut, and in theory the network can
be seen as learning deviations from that identity layer. It is experimentally validated
that a strong linear component is beneficial for the convergence of deep networks [49].
The shortcut is given as the right input in Eq. (6.13). The function φ is implemented
as the ReLU activation function.

The graph is dynamically updated, hence the name Dynamic Graph CNN. A new
pairwise distance matrix is computed on the feature space resulting from an EdgeConv
block. After the first EdgeConv block the distance elements dij are calculated from
points with dimensionality equal to the number of features: pi,pj ∈ RF . All vertices
have their neighborhoods recalculated with k-NN based on the new distance matrix,
creating an entirely new graph for the next EdgeConv operation. Dynamic graph
updates improves performance since proximity in feature space differs from proximity
in model input, and updating the graph resolves that [42].

50 Chapter 6. Jet energy regression

To perform jet-level regression global average pooling is used to aggregate the learned
features over all n particles in the cloud. Then, like for PFN-r, the output is concate-
nated with jet-level features and given as input to an MLP with linear, BatchNorm
and ReLU layers. The very last layer is a fully connected linear mapping to the target.
The MLP and the output layer are collectively expressed as ρ:

f(X,A) = ρ

(
1
n

∑
i∈V

φ(xi,XN k
i
)
)
. (6.14)

The adjacency matrix A given as input to the full network f are the indices of features
in a vertex i:s neighborhood produced by k-NN, which are updated for every EdgeConv
block. The neighborhood features themselves are expressed as XN k

i
. One thing to note

about equation (6.14) is that it shows global pooling and a final learnable function
applied on one set of features with n rows from one constituent collection. In the
actual network, ρ takes more collections as inputs. Jet-level data, SV, charged and
neutral PF candidates are passed as separate inputs as shown in Fig. 6.6.

coordinates neutral
constituents

EdgeConv Block
k = 16, c = (64, 64, 64)

EdgeConv Block
k = 16, c = (128, 128, 128)

EdgeConv Block
k = 16, c = (256, 256, 256)

Global Average Pooling

Fully Connected
512, ReLu

global features

Fully Connected
256, ReLu

Fully Connected
128, ReLu

Fully Connected
64, ReLu

Fully Connected
1

coordinates charged
constituents

EdgeConv Block
k = 16, c = (64, 64, 64)

EdgeConv Block
k = 16, c = (128, 128, 128)

EdgeConv Block
k = 16, c = (256, 256, 256)

Global Average Pooling

coordinates secondary
vertices

EdgeConv Block
k = 8, c = (32, 32, 32)

EdgeConv Block
k = 8, c = (64, 64, 64)

EdgeConv Block
k = 8, c = (128, 128, 128)

Global Average Pooling

(a) ParticleNet-r

coordinates constituents

k-NN

edge featuresk-NN indices

Dense

ReLu

Dense

ReLu

Dense

ReLu

Aggregation

ReLu

BatchNorm

BatchNorm

BatchNorm

(b) EdgeConv block

Figure 6.6: The ParticleNet-r architecture. The complete network can be seen on the left side, and
the structure of the EdgeConv block is illustrated on the right.

Two ParticleNet-r versions are trained for comparison, one with many parameters
as well as a light version with less parameters. The number for k is set to 16 for
both charged and neutral PF candidates, and 8 for the smaller SV collection in both
ParticleNet-r and ParticleNet-r Lite. The number of channels in each of ParticleNet-r’s
EdgeConv blocks for PF candidate are (64, 64, 64), (128, 128, 128) and (256, 256, 256).
For SV they are set as (32, 32, 32), (64, 64, 64) and (128, 128, 128). In ParticleNet-
r Lite there are also three EdgeConv blocks, but with two layers each. EdgeConv

6.4. Implementation and training 51

blocks for PF candidates have (16, 16), (32, 32) and (48, 48) units each, whereas the
corresponding SV units are (8, 8), (16, 16) and (24, 24). Lastly, the MLP that makes
up the tail of the network has (512, 256, 128, 64) units in ParticleNet-r and (64, 32,
16, 8) units in ParticleNet-r Lite.

6.4 Implementation and training

The whole training pipeline was implemented using the open-source TensorFlow frame-
work [50]. TensorFlow can compute complex tensor operations, crucial to ML. It runs
on distributed systems and on multiple different computational devices such as GPU
cards. A plethora of built-in ML related algorithms can be accessed and executed
using application programming interfaces (APIs) in different programming languages.
This work1 used the Python API to ingest particle data and train jet energy regression
models in an efficient manner.

The upper picture in Fig. 6.7 shows a standard ML input pipeline where data is read,
preprocessed, and trained on sequentially. However, training can be sped up using
TensorFlow’s data API [51] which makes it possible to process data in parallel. The
bottom picture in the aforementioned figure shows exactly that. There the same steps
are executed as in the naive pipeline, but the preprocessing overlap because many CPU
cores are working in parallel. In addition to parallel maps, prefetching is also used to
decrease training time by reading elements from the input dataset to an internal buffer
while some other data is still being trained on. The number of cores used by parallel
mapping, and the number of elements to prefetch were both automatically tuned in a
dynamic fashion at runtime by TensorFlow’s data API in the training pipeline used for
this study.

Plenty of computing power was available for training the neural networks. The system
used for training has an AMD Ryzen Threadripper 3960X CPU chip with 24 cores
supporting 2 threads each and an unboosted clock speed of 2.2 GHz. All 48 threads
were used in parallel by Tensorflow. Since the input was processed heavily in parallel
one might think that the working memory becomes a bottleneck, however 256GB RAM
DDR4 was plenty. Even if the RAM is insufficient the TensorFlow pipeline that was
used can auto-adjust to available memory. Finally, the most crucial components for
effective deep learning are the hardware accelerators, in this case GPUs. The models
were trained on two of the latest generation Nvidia GeForce RTX 3090 cards.

The training progresses in epochs. An epoch is defined as one pass of the full training

1gitlab.cern.ch/dholmber/jec-gnn

https://gitlab.cern.ch/dholmber/jec-gnn

52 Chapter 6. Jet energy regression

Figure 6.7: Comparison between a naive TensorFlow data pipeline (above), and one running in
parallel (below) [52]. The time it takes to finish training a deep learning model is significantly sped
up by reading, mapping and training multiple data samples at once.

set through a model. Every epoch consists of many training steps each processing a
batch with some number of elements (1024 in this case). After each epoch has finished
training the model predicts the target on the validation set. Since the validation set is
independent of the training set, the validation loss is a good measure of how a model
is performing. Two algorithms, or callbacks, that monitor validation loss to make
informed decision regarding training are used for the jet energy regression. Firstly,
more accurate minima for the loss function can be found by reducing the learning rate
when the validation loss plateaus. In this study, the learning rate was reduced by a
factor of five when that happens. The threshold for what counts as an improvement
was set as 10−4, and the reduction triggers after five epochs with no improvement.
Secondly, training is stopped early to prevent overfitting. The minimum value that
the early stopping callback qualifies as an improvement is also set to 10−4. Training is
stopped if no improvement is seen after seven epochs, and the model weights for the
epoch with the lowest validation loss are restored. It makes sense to have the early
stopping callback be slightly more patient than the learning rate reduction callback,
because the model can potentially be improved by changing the learning rate.

7. Results

The performance of the deep learning models are evaluated from a few different perspec-
tives. Firstly, it is looked at from the perspective of model complexity. Comparisons
of the different architectures presented in the last chapter in terms of computational
complexity can be helpful when speed needs to be taken into account in addition to
the model’s predictive performance. The second metric presented here is the reduction
in flavor dependence, meaning that the pT response should ideally be similar for all
flavors. Lastly, and arguably the most important metric, is the improvement in jet
energy resolution.

7.1 Model complexity

Table 7.1 shows the number of parameters in each of the neural networks. PFN-r has
the most parameters, followed by ParticleNet-r. The light versions of the networks
have far fewer parameters, and ParticleNet-r Lite is the one with slightly less of the
two. Standard corrections rely on only about a thousand parameters, none of which
are trained using machine learning.

Both versions of ParticleNet-r are significantly slower to train due to having more de-
manding GPU computations. Calculating the graph of neighbors is especially time
consuming. The higher complexity is also reflected in both ParticleNet-r models’ in-
ference times. PFN-r is over ten times faster for making predictions. The inference
time for the coffea [53] implementation of the standard approach is also included for
comparison. It has an inference time two orders of magnitude faster than the PFN
models.

The loss value for the test set, calculated using Eq. (6.8), is a straightforward metric
for how well a model is performing on the task it has been trained on. The most
expressive model, ParticleNet-r, has the lowest test loss. PFN-r has the second lowest
loss value, and the two light models have very similar test loss. Standard JEC has the
highest test loss.

53

54 Chapter 7. Results

Parameters Training step [ms] Inference time [ms] Test loss

Standard 1066 0.0005 0.1143
PFN-r 1 473 313 52 0.0344 0.0789
ParticleNet-r 1 199 553 459 0.4731 0.0782
PFN-r Lite 41 305 50 0.0344 0.0796
ParticleNet-r Lite 38 417 196 0.1174 0.0799

Table 7.1: Number of parameters, time to train a batch, inference time and test loss for the models.
The training step is the time it takes to train on one batch with 1024 elements, and inference time is
the time it takes to make predictions for one set of inputs. Both metrics were tested on two Nvidia
GeForce RTX 3090 GPUs running in parallel for the neural networks. Standard correction benchmarks
were tested on an AMD Ryzen Threadripper 3960X CPU.

The number of parameters of a model in relation to the other metrics can tell us
how well a certain architecture is performing. Having a larger PFN-r network seems
to affect the computational complexity very little. The time it takes to train one
batch with 1024 elements is very similar for both PFN-r networks, and the inference
time is identical. More decimals have to be included to notice a difference, but they
are as good as indistinguishable from each other. To give an idea, the difference in
inference time over the whole test dataset with 2.7 million jets, is 4ms. Since the larger
PFN-r network has a noticeable lower loss than the light version and no speed penalty,
it can be concluded that more units are purely beneficial when opting for a PFN-r
architecture. For ParticleNet-r, that is not the case. The difference in computational
complexity for the large model compared to the small one is larger. The training time
is more than twice as fast, and the inference time is more than four times as fast for
the light version, but still a fair bit slower than PFN-r. The test loss for ParticleNet-r
Lite is roughly on par with PFN-r Lite and clearly worse than ParticleNet-r. When
accuracy is important the large ParticleNet-r version, with fewer parameters compared
to PFN-r, is the preferred model. If inference time is crucial, and PFN-r fails to meet
the requirements, then the standard approach is the best option.

7.2 Flavor dependence

The median of the response, Eq. (6.7), for all jet flavors individually is shown in Fig
7.1. All deep learning models successfully reduce the response differences between the
jet flavors, or flavor dependence substantially. The reduction is larger in the central
region compared to forward region. It can be explained by that the quality of event
reconstruction is normally worse in the forward region where no tracking information

7.2. Flavor dependence 55

is available, giving less reliable measurements to train on. The largest improvement in
flavor dependence for the response is seen between light quark jets and gluon jets. It
is a welcome result since the difference between them is regarded to be a weak point
for standard JEC.

u d s c b g

0.990

0.995

1.000

1.005

1.010

1.015

M
ed

ia
n

re
sp

on
se

pgen
T > 30 GeV, 0 < | gen| < 2.5

Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

(a) Median response in the central region.

u d s c b g
0.97

0.98

0.99

1.00

1.01

1.02

1.03

M
ed

ia
n

re
sp

on
se

pgen
T > 30 GeV, 2.5 < | gen| < 5

Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

(b) Median response in the forward region.

Figure 7.1: Median energy response for every jet flavor. The improvement over standard JEC is
about 70% in the central region and 30% in the forward region of the detector for all models.

The error bars in the plots are produced using the statistical bootstrapping technique.
The response is randomly sampled 30 times creating new sets of response values equal
in size to the original. The median is calculated for each sample individually. The stan-
dard deviation is then calculated for those 30 median values, which gives an uncertainty
to every point.

The sum of absolute errors (SAE) can be used to assess the improvement in flavor
dependence. It can be calculated directly from the points in Fig. 7.1 by summing
the median response for every flavor subtracted by the mean of those same points and
taking the absolute value of the difference. Formally, it can be written as:

SAE =
n∑

flavor

∣∣∣∣∣R50%, flavor −
1
n

n∑
flavor

(R50%, flavor)
∣∣∣∣∣ (7.1)

where n = 6 is the total number of flavors. The relative improvement in flavor depen-
dence for a model compared to standard JEC will be denoted by α, and is defined as:

α = 1− SAEModel/SAEStandard. (7.2)

The values that α can take on ranges from any negative value up to one. A negative
result would mean the models perform worse than standard correction, zero is equal to
no improvement at all, and α = 1 would mean that the median response is the same
for all jet flavors.

56 Chapter 7. Results

The flavor dependence results for the central detector region are shown in Table 7.2.
Interestingly, PFN-r Lite has the largest improvement, it is 71.85% better compared
to standard JEC. PFN-r Lite manages to improve u and d jets more than the other
models while still having roughly the same median response as the rest of the models
for other jet flavors. The other models hover around 67-68% improvement. PFN-r is
particularly good at correcting s jets but slightly worse than other models for b jets. It
might seem peculiar that a light model reduces flavor dependence more than its larger
counterpart, but it is completely understandable since the regression targets a better
jet energy resolution and not a reduction in flavor dependence.

α [%] βuds [%] βc [%] βb [%] βg [%]

PFN-r 67.88 11.43 9.69 9.86 7.99
ParticleNet-r 68.11 12.50 10.63 10.65 8.84
PFN-r Lite 71.85 10.31 8.74 8.78 7.04
ParticleNet-r Lite 67.33 9.32 8.17 8.21 6.55

Table 7.2: Results in the central region of the detector, for pgen
T > 30 GeV jets.

The results for the forward region are shown in Table 7.3. Here too a light model
performs the best, this time it is ParticleNet-r Lite with 30.65% improvement over
standard JEC. There is more fluctuation in the results between models, but overall the
improvements are 28-31% in comparison to standard corrections. The uncertainty in
the forward region is larger which stems from the forward region being more noisy in
general. Also, the amount of data in the forward region is not as great as in the central
region. As seen in Fig. 6.1b, s jets are least represented in the dataset, and their
median response uncertainty is also highest. Flavor dependence results in multiple pT

bins is available in Appendix A.

α [%] βuds [%] βc [%] βb [%] βg [%]

PFN 28.52 14.42 11.35 9.00 9.02
ParticleNet-r 30.26 14.63 11.91 9.08 9.70
PFN-Lite 29.20 13.45 10.41 8.26 8.33
ParticleNet-r Lite 30.65 13.14 10.81 8.17 9.20

Table 7.3: Results in the forward region of the detector, for pgen
T > 30 GeV jets.

7.3. Jet energy resolution 57

7.3 Jet energy resolution

The regression performance can furthermore be evaluated by looking at the relative
jet energy resolution. It is defined here as the interquartile range (IQR) divided by the
median for the response:

s̄ = R75% −R25%

R50%
. (7.3)

IQR can be used as a measure of response resolution, and the median is the middle
value separating the greater and lesser halves of the data. Both the median and IQR are
robust statistics, meaning that they are less affected by outliers compared to the mean
or standard deviation for example. IQR is a robust measure of statistical dispersion,
and the median is a robust measure of central tendency.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IQ
R

/ M
ed

ia
n

re
sp

on
se

uds, 0 < | gen| < 2.5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.9

1.0

Ra
tio

(a) Resolution for light quarks in the central region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IQ
R

/ M
ed

ia
n

re
sp

on
se

c, 0 < | gen| < 2.5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.9

1.0

Ra
tio

(b) Resolution for c quarks in the central region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IQ
R

/ M
ed

ia
n

re
sp

on
se

b, 0 < | gen| < 2.5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.9

1.0

Ra
tio

(c) Resolution for b quarks in the central region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IQ
R

/ M
ed

ia
n

re
sp

on
se

g, 0 < | gen| < 2.5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.9

1.0

Ra
tio

(d) Resolution for gluons in the central region.

Figure 7.2: Resolution for all jet flavors in the central region of the detector. The improvement over
standard corrections is on average around 7-12%.

58 Chapter 7. Results

The relative jet energy resolution is shown as a function of generator-level pgenT in
the upper subplots in both Fig. 7.2 and Fig. 7.3. A smaller value is better. How
the resolution compares to standard corrections is shown in the lower subplots as the
direct ratio between them. The jets have higher multiplicity and the effect of pileup
diminishes at high pT, and therefore the models are expected to perform better at high
pT, which they on average do. There are fewer jets in the high pT region and in the
high |η| region, as Fig. 6.1a show. This causes the bootstrapped uncertainty to be
larger there.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

IQ
R

/ M
ed

ia
n

re
sp

on
se

uds, 2.5 < | gen| < 5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.8
0.9
1.0

Ra
tio

(a) Resolution for light quarks in the forward region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

IQ
R

/ M
ed

ia
n

re
sp

on
se

c, 2.5 < | gen| < 5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.8
0.9
1.0

Ra
tio

(b) Resolution for c quarks in the forward region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

IQ
R

/ M
ed

ia
n

re
sp

on
se

b, 2.5 < | gen| < 5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.8
0.9
1.0

Ra
tio

(c) Resolution for b quarks in the forward region.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

IQ
R

/ M
ed

ia
n

re
sp

on
se

g, 2.5 < | gen| < 5
Standard
PFN-r
ParticleNet-r
PFN-r Lite
ParticleNet-r Lite

102 103

pgen
T

0.8
0.9
1.0

Ra
tio

(d) Resolution for gluons in the forward region.

Figure 7.3: Resolution for all jet flavors in the forward region of the detector. The improvement
over standard corrections is on average around 12-17%.

The improvement in resolution for a model with respect to standard corrections is
denoted by β. It can be calculated from the jet energy resolution ratio:

β = 1− s̄Model/s̄Standard. (7.4)

7.3. Jet energy resolution 59

Table 7.2 show a summary of the resolution improvement in the central region, and
Table 7.3 shows the results for the forward region. The models produce a larger im-
provement in the forward region supposedly because the standard resolution is worse
in that region to begin with. Results further divided into low, medium and high pT

regions are found in Appendix A. It is clear that the larger models outperform the
smaller ones. The resolution improvement also correlates well with the test loss in
Table 7.1.

8. Conclusion

The standard set of jet energy corrections are used by almost every physics analysis in
CMS, and the requirements on robustness as well as general applicability are particu-
larly high. In this thesis deep learning was used to improve these corrections, bringing
the reconstructed transverse momentum closer to the particle-level counterpart. This
is possible because jet energy regression can be formalized as a regression problem
within the broader context of supervised machine learning.

The neural networks presented in this thesis can make predictions for differently fla-
vored jets. This is in large thanks to the QCD dataset they have been trained on
containing equal distributions of light quark jets, gluon jets as well as bottom and
charm jets. The data has also been downsampled in overpopulated regions of the
parameter space improving the gain in performance for the deep learning models sig-
nificantly.

Following the latest advancements in deep learning in high energy physics, jets are
treated as particle clouds, or unordered sets of particles. It is a very natural way of
representing jets that includes all information about the variable length sets of particles
contained in the jets. Model architectures able to ingest data in such a format are
presented from the recently proposed geometric deep learning framework. The choice
of models used in this thesis is grounded on previous studies in jet flavor tagging for
which the set-based Particle Flow Network and the graph-based ParticleNet have been
developed.

The deep learning models manage to improve the energy resolution and flavor depen-
dence significantly, reaching state of the art performance for jet energy corrections.
ParticleNet is observed to have the best overall improvement in results due to the
inclusion of locality and a dynamically updating graph. The purely set-based PFN
on the other hand is substantially faster to train, and is the preferred architecture if
inference time is important. Notably, the standard approach is because of its simplicity
much faster still. However, the neural networks yield superior corrections.

61

Bibliography

[1] The CMS Collaboration, “Jet Energy Calibrations at CMS experiment with 13
TeV collisions,” PoS, vol. EPS-HEP2017, p. 805, 2017. doi.org/10.22323/1.
314.0805.

[2] A. Radovic, M. Williams, D. Rousseau, et al., “Machine learning at the energy
and intensity frontiers of particle physics,” Nature, vol. 560, pp. 41–48, Aug 2018.
doi.org/10.1038/s41586-018-0361-2.

[3] D. Guest, K. Cranmer, and D. Whiteson, “Deep learning and its application to lhc
physics,” Annual Review of Nuclear and Particle Science, vol. 68, no. 1, pp. 161–
181, 2018. doi.org/10.1146/annurev-nucl-101917-021019.

[4] The CMS Collaboration, “A Deep Neural Network for Simultaneous Estimation
of b Jet Energy and Resolution,” Computing and software for big science, vol. 4,
no. 1, p. 10, 2020. doi.org/10.1007/s41781-020-00041-z.

[5] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle
physics,” Machine Learning: Science and Technology, vol. 2, p. 021001, jan 2021.
doi.org/10.1088/2632-2153/abbf9a.

[6] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola, “Deep Sets,” 2018. arxiv.org/abs/1703.06114.

[7] H. Qu and L. Gouskos, “Jet tagging via particle clouds,” Physical Review D,
vol. 101, no. 5, 2020. doi.org/10.1103/PhysRevD.101.056019.

[8] M. Thomson, Modern Particle Physics. Cambridge University Press, 2013. doi.
org/10.1017/CBO9781139525367.

[9] Wikimedia Commons, “Standard model of elementary particles,” 2019. w.wiki/
49Nk.

[10] L. Evans and P. Bryant, “LHC machine,” Journal of Instrumentation, vol. 3,
no. 08, pp. S08001–S08001, 2008. doi.org/10.1088/1748-0221/3/08/s08001.

63

https://doi.org/10.22323/1.314.0805
https://doi.org/10.22323/1.314.0805
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1007/s41781-020-00041-z
https://doi.org/10.1088/2632-2153/abbf9a
https://arxiv.org/abs/1703.06114
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1017/CBO9781139525367
https://doi.org/10.1017/CBO9781139525367
https://w.wiki/49Nk
https://w.wiki/49Nk
https://doi.org/10.1088/1748-0221/3/08/s08001

64 Bibliography

[11] J. Gruschke, Observation of Top Quarks and First Measurement of the tt̄-
Production Cross Section at a Centre-of-Mass Energy of the 7 TeV with the CMS
Experiment at the LHC. PhD thesis, Karlsruher Institut für Technologie (KIT),
2011. publikationen.bibliothek.kit.edu/1000022394.

[12] The CMS Collaboration, “The CMS experiment at the CERN LHC,” Journal of
Instrumentation, vol. 3, no. 08, pp. S08004–S08004, 2008. doi.org/10.1088/
1748-0221/3/08/s08004.

[13] I. Neutelings, “CMS coordinate system,” 2017. tikz.net/axis3d_cms.

[14] S. R. Davis, “Interactive Slice of the CMS detector,” 2016. cds.cern.ch/record/
2205172.

[15] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA
8.2,” Computer Physics Communications, vol. 191, pp. 159–177, 2015. doi.org/
10.1016/j.cpc.2015.01.024.

[16] M. Bähr et al., “Herwig++ Physics and Manual,” Eur. Phys. J. C, vol. 58, pp. 639–
707, 2008. doi.org/10.1140/epjc/s10052-008-0798-9.

[17] V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer,
J. Brandstetter, E. Brondolin, M. Dragicevic, et al., “Event generator tunes ob-
tained from underlying event and multiparton scattering measurements,” The
European Physical Journal C, vol. 76, no. 3, 2016. doi.org/10.1140/epjc/
s10052-016-3988-x.

[18] A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer,
J. Brandstetter, M. Dragicevic, J. Erö, et al., “Extraction and validation of
a new set of cms pythia8 tunes from underlying-event measurements,” The
European Physical Journal C, vol. 80, no. 1, 2020. doi.org/10.1140/epjc/
s10052-019-7499-4.

[19] P. Nason, “A New Method for Combining NLO QCD with Shower Monte Carlo
Algorithms,” Journal of High Energy Physics, vol. 2004, no. 11, p. 40, 2004. doi.
org/10.1088/1126-6708/2004/11/040.

[20] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implement-
ing NLO calculations in shower Monte Carlo programs: the POWHEG BOX,”
Journal of High Energy Physics, vol. 2010, no. 6, p. 6, 2010. doi.org/10.1007/
JHEP06(2010)043.

https://publikationen.bibliothek.kit.edu/1000022394
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://tikz.net/axis3d_cms
https://cds.cern.ch/record/2205172
https://cds.cern.ch/record/2205172
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-016-3988-x
https://doi.org/10.1140/epjc/s10052-016-3988-x
https://doi.org/10.1140/epjc/s10052-019-7499-4
https://doi.org/10.1140/epjc/s10052-019-7499-4
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP06(2010)043

Bibliography 65

[21] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, and H. Araujo, “Geant4 — a
simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506,
no. 3, pp. 250–303, 2003. doi.org/10.1016/S0168-9002(03)01368-8.

[22] B. Webber, “Parton shower Monte Carlo event generators,” Scholarpedia, vol. 6,
no. 12, p. 10662, 2011. Revision #128236, doi.org/10.4249/scholarpedia.
10662.

[23] K. Kallonen, “Quantitative Comparison of Deep Neural Networks for
Quark/Gluon Jet Discrimination,” Master’s thesis, University of Helsinki, 2019.
helda.helsinki.fi/handle/10138/299781.

[24] The CMS Collaboration, “Particle-flow reconstruction and global event description
with the CMS detector,” JINST, vol. 12, p. P10003. 82 p, 2017. doi.org/10.
1088/1748-0221/12/10/P10003.

[25] S. Laurila, Search for Charged Higgs Bosons Decaying to a Tau Lepton and a
Neutrino with the CMS Experiment. PhD thesis, University of Helsinki, 2019.
helda.helsinki.fi/handle/10138/305652.

[26] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet clustering algorithm,”
Journal of High Energy Physics, vol. 2008, no. 04, pp. 063–063, 2008. doi.org/
10.1088/1126-6708/2008/04/063.

[27] H. Kirschenmann, “Jets at CMS and the determination of their energy scale,”
2012. phys.org/news/2012-07-jets-cms-energy-scale.html.

[28] The CMS Collaboration, “Jet energy scale and resolution performance with 13
TeV data collected by CMS in 2016-2018,” 2020. cds.cern.ch/record/2715872.

[29] Euclid, “Elements,” c. 300 BC. farside.ph.utexas.edu/Books/Euclid/
Elements.pdf.

[30] F. Klein, “Vergleichende Betrachtungen über neuere geometrische Forschun-
gen,” Mathematische Annalen, vol. 43, pp. 63–100, 1893. doi.org/10.1007/
BF01446615.

[31] M. Bronstein, J. Bruna, T. Cohen, and P. Velic̆ković, “Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges,” 2021. arxiv.org/abs/2104.
13478.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
deeplearningbook.org.

https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.4249/scholarpedia.10662
https://doi.org/10.4249/scholarpedia.10662
https://helda.helsinki.fi/handle/10138/299781
https://doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1748-0221/12/10/P10003
https://helda.helsinki.fi/handle/10138/305652
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://phys.org/news/2012-07-jets-cms-energy-scale.html
https://cds.cern.ch/record/2715872
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
https://farside.ph.utexas.edu/Books/Euclid/Elements.pdf
https://doi.org/10.1007/BF01446615
https://doi.org/10.1007/BF01446615
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://deeplearningbook.org

66 Bibliography

[33] S. Linnainmaa, “The representation of the cumulative rounding error of an algo-
rithm as a Taylor expansion of the local rounding errors,” Master’s thesis, Univer-
sity of Helsinki, 1970. ethesis.helsinki.fi/repository/handle/123456789/
29618.

[34] P. Velic̆ković, “Theoretical Foundations of Graph Neural Networks,” 2021. talks.
cam.ac.uk/talk/index/155341.

[35] A. Popov, “Inputs for ML jet calibration,” 2020. gitlab.cern.ch/aapopov/
ml-jec-vars.

[36] The CMS Collaboration, “CMS Software,” 2021. cms-sw.github.io.

[37] G. Petrucciani, A. Rizzi, and C. Vuosalo, “Mini-AOD: A New Analysis Data For-
mat for CMS,” Journal of Physics: Conference Series, vol. 664, no. 7, p. 072052,
2015. doi.org/10.1088/1742-6596/664/7/072052.

[38] R. Brun and F. Rademakers, “ROOT — An object oriented data analysis frame-
work,” Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, vol. 389, no. 1, pp. 81–
86, 1997. doi.org/10.1016/S0168-9002(97)00048-X.

[39] A. Popov, “Choosing training set for DNN jet calibration,” 2020. indico.cern.
ch/event/924584/#10-pt-spectrum-in-dnn-jet-cali.

[40] “Performance of quark/gluon discrimination in 8 TeV pp data,” 2013. cds.cern.
ch/record/1599732.

[41] P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01,
2020. doi.org/10.1093/ptep/ptaa104.

[42] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-
namic Graph CNN for Learning on Point Clouds,” ACM Trans. Graph., vol. 38,
no. 5, 2019. doi.org/10.1145/3326362.

[43] P. T. Komiske, E. M. Metodiev, and J. Thaler, “Energy flow networks: deep
sets for particle jets,” Journal of High Energy Physics, vol. 2019, no. 1, 2019.
doi.org/10.1007/JHEP01(2019)121.

[44] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, (Madison, WI, USA), pp. 807–814,
Omnipress, 2010. dl.acm.org/doi/10.5555/3104322.3104425.

https://ethesis.helsinki.fi/repository/handle/123456789/29618
https://ethesis.helsinki.fi/repository/handle/123456789/29618
https://talks.cam.ac.uk/talk/index/155341
https://talks.cam.ac.uk/talk/index/155341
https://gitlab.cern.ch/aapopov/ml-jec-vars
https://gitlab.cern.ch/aapopov/ml-jec-vars
https://cms-sw.github.io
https://doi.org/10.1088/1742-6596/664/7/072052
https://doi.org/10.1016/S0168-9002(97)00048-X
https://indico.cern.ch/event/924584/#10-pt-spectrum-in-dnn-jet-cali
https://indico.cern.ch/event/924584/#10-pt-spectrum-in-dnn-jet-cali
https://cds.cern.ch/record/1599732
https://cds.cern.ch/record/1599732
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1145/3326362
https://{doi.org/10.1007/JHEP01(2019)121}
https://dl.acm.org/doi/10.5555/3104322.3104425

Bibliography 67

[45] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (G. Gordon, D. Dunson, and M. DudÃk, eds.), vol. 15 of Proceedings
of Machine Learning Research, (Fort Lauderdale, FL, USA), pp. 315–323, PMLR,
11–13 Apr 2011. proceedings.mlr.press/v15/glorot11a.html.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015. doi.org/10.1109/
ICCV.2015.123.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15,
pp. 448–456, JMLR.org, 2015. dl.acm.org/doi/10.5555/3045118.3045167.

[48] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2017.
arxiv.org/abs/1412.6980.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. doi.org/10.1109/CVPR.2016.90.

[50] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015. tensorflow.org.

[51] D. G. Murray, J. Simsa, A. Klimovic, and I. Indyk, “tf.data: A Machine Learning
Data Processing Framework,” in Proceedings of the VLDB Endowment, vol. 14,
pp. 2945–2958, 2021. vldb.org/pvldb/vol14/p2945-klimovic.pdf.

[52] Google, “Better performance with the tf.data API.” tensorflow.org/guide/
data_performance, Accessed on Aug. 31, 2021.

[53] L. Gray, N. Smith, A. Novak, et al., “Coffeateam/coffea: Release v0.7.4,” June
2021. doi.org/10.5281/zenodo.4901548.

https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://dl.acm.org/doi/10.5555/3045118.3045167
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR.2016.90
https://tensorflow.org
https://vldb.org/pvldb/vol14/p2945-klimovic.pdf
https://tensorflow.org/guide/data_performance
https://tensorflow.org/guide/data_performance
https://doi.org/10.5281/zenodo.4901548

A. pT binned results

This appendix contains results split up between the central detector region, Table A.1,
and the forward detector region, Table A.2. It extends the results presented in Chapter
7 by dividing the flavor dependence α, and resolution β into different pT intervals. The
general trend is that improvements are more pronounced for higher pT jets.

Interval [GeV] Model α [%] βuds [%] βc [%] βb [%] βg [%]

30 < pgen
T < 50

PFN-r 26.35 10.95 6.90 8.43 6.03
ParticleNet-r 26.62 10.50 5.87 8.13 6.24
PFN-r Lite 25.05 9.61 5.70 7.14 5.17
ParticleNet-r Lite 21.31 9.15 5.62 7.28 4.68

50 < pgen
T < 100

PFN-r 41.17 11.29 8.40 10.99 7.31
ParticleNet-r 38.86 11.78 8.68 11.37 7.36
PFN-r Lite 41.48 10.22 7.60 9.60 6.41
ParticleNet-r Lite 36.90 9.14 7.22 9.56 5.93

100 < pgen
T < 300

PFN-r 57.09 11.17 8.10 9.84 8.05
ParticleNet-r 57.29 11.69 8.80 10.10 8.22
PFN-r Lite 60.44 9.81 7.20 8.52 6.99
ParticleNet-r Lite 55.49 8.98 6.89 8.04 6.31

300 < pgen
T < 1000

PFN-r 72.37 12.55 10.12 9.66 8.06
ParticleNet-r 73.32 13.98 11.33 10.77 9.04
PFN-r Lite 76.68 11.68 9.30 8.55 7.20
ParticleNet-r Lite 73.56 10.47 8.44 7.90 6.56

pgen
T > 1000

PFN-r 81.36 11.73 11.46 10.70 9.30
ParticleNet-r 84.43 13.19 13.30 11.87 10.40
PFN-r Lite 87.20 10.76 10.62 9.86 8.18
ParticleNet-r Lite 84.16 9.59 9.84 9.36 7.82

Table A.1: Summary of jet energy regression results in the 0 < |ηgen| < 2.5 region.

69

70 Appendix A. pT binned results

Interval [GeV] Model α [%] βuds [%] βc [%] βb [%] βg [%]

30 < pgen
T < 50

PFN-r 7.51 12.79 9.97 9.09 8.27
ParticleNet-r 10.81 13.66 10.16 9.52 8.50
PFN-r Lite 10.33 12.47 8.61 8.90 8.08
ParticleNet-r Lite 12.27 12.53 10.36 9.79 9.19

50 < pgen
T < 100

PFN-r 27.87 12.43 9.98 7.36 7.42
ParticleNet-r 27.34 12.62 10.20 7.44 8.17
PFN-r Lite 26.26 11.86 9.25 7.12 6.55
ParticleNet-r Lite 28.41 11.33 9.33 6.54 6.94

100 < pgen
T < 300

PFN-r 48.59 18.12 14.04 10.93 12.41
ParticleNet-r 48.03 18.55 14.49 11.33 13.15
PFN-r Lite 52.51 16.47 13.18 9.83 12.04
ParticleNet-r Lite 52.36 16.41 13.33 8.71 11.72

300 < pgen
T < 1000

PFN-r 61.26 24.54 25.55 18.45 24.12
ParticleNet-r 65.43 19.98 20.30 13.95 23.74
PFN-r Lite 62.10 18.66 20.48 10.39 22.82
ParticleNet-r Lite 68.02 26.34 16.65 14.71 19.10

Table A.2: Summary of jet energy regression results in the 2.5 < |ηgen| < 5 region.

	Introduction
	Particle physics at CMS
	Standard Model
	Feynman diagrams
	Quantum chromodynamics
	Particle interactions with matter
	Large Hadron Collider
	Compact Muon Solenoid

	Event simulation
	Hard scatter
	Parton shower
	Hadronization
	Underlying event
	Detector simulation

	Event reconstruction
	Particle Flow algorithm
	Jet clustering
	Jet calibration
	Pileup mitigation
	Response corrections
	Residual corrections
	Flavor corrections

	Geometric deep learning
	Learning in high dimensions
	Geometric priors
	Geometric blueprint for deep learning
	Learning on sets and graphs

	Jet energy regression
	Dataset
	Target and loss function
	Models
	Mutual architectural choices
	Particle Flow Network
	ParticleNet

	Implementation and training

	Results
	Model complexity
	Flavor dependence
	Jet energy resolution

	Conclusion
	Bibliography
	Appendix pT binned results

